Compare commits

...

19 Commits

Author SHA1 Message Date
mht e7823c55ba Merge remote-tracking branch 'origin/add-capture-card' into add-capture-card 4 weeks ago
mht acfa58f665 added auto ip finding and changed gst pipeline 4 weeks ago
mht 759e29d564 added video streaming through rtsp 4 weeks ago
mht bd13a03b61 Initial commit 4 weeks ago
mht 48e06828ea added capture card 4 weeks ago
mht a1e43b8e37 added capture card 4 weeks ago
s_kiani f18154a7e6 adedd vision_service.cpython-37m-x86_64-linux-gnu.so 1 month ago
s_kiani 60674e7b85 added torch.cuda.empty_cache() 1 month ago
s_kiani 3e77f014dc handeld emmiting null bboxes 1 month ago
s_kiani c5fcd089b3 changed search_area_scale from 5 to 7 for tracking small objects near corners 1 month ago
s_kiani 691a281bb0 made project thread safe by making detector and tracker objects out of core object and they are shared using pointers 1 month ago
s_kiani c13e231bec added torch.cuda.empty_cache() 1 month ago
s_kiani 1bae5c72fd edited newframe signal emition 1 month ago
s_kiani baf86a4132 handeled null bboxes and added debugging for prints 1 month ago
s_kiani 72340ecdcf handeled null bboxes 1 month ago
s_kiani abba3fadf1 added hearbeat 1 month ago
s_kiani 04e253a33b Merge remote-tracking branch 'origin/client-connection' into client-connection 2 months ago
s_kiani 59369df540 Add connection logic to a separate thread for independent client handling 2 months ago
s_kiani 7324e6d278 removed qtimer and added connection_thread 2 months ago
  1. BIN
      Oxygen-Sys-Warning.wav
  2. 205
      app.py
  3. 2
      config.yaml
  4. 142
      core.py
  5. 52
      cvStreamer.py
  6. 2
      detector/demo.py
  7. 47
      gpuMonitor.py
  8. 1
      message_queue/proto/SetCameraMessage.proto
  9. 11
      message_queue/proto/SetCameraMessage_pb2.py
  10. 112
      server.py
  11. 1
      tracker/ltr/external/PreciseRoIPooling/pytorch/prroi_pool/functional.py
  12. 2
      tracker/ltr/models/backbone/resnet.py
  13. 1
      tracker/ltr/models/bbreg/atom_iou_net.py
  14. 2
      tracker/ltr/models/layers/distance.py
  15. 2
      tracker/ltr/models/target_classifier/features.py
  16. 6
      tracker/pytracking/features/augmentation.py
  17. 7
      tracker/pytracking/features/preprocessing.py
  18. 1
      tracker/pytracking/libs/dcf.py
  19. 3
      tracker/pytracking/tracker/dimp/dimp.py
  20. 2
      tracker/pytracking/utils/params.py
  21. BIN
      video_streamer/vision_service.cpython-37m-x86_64-linux-gnu.so

BIN
Oxygen-Sys-Warning.wav

205
app.py

@ -4,9 +4,12 @@ import sys
from datetime import datetime, timedelta
from time import sleep
from typing import List
import sys
import os
import time
import threading # Import threading module
from cvStreamer import cvStreamer
from detector import Detector
# Add the proto directory to the Python path
proto_dir = os.path.join(os.path.dirname(__file__), 'message_queue', 'proto')
@ -24,6 +27,7 @@ from icecream import ic
from configs import ConfigManager
from core import Core
from tracker import Tracker
from message_queue.Bridge import Bridge
from message_queue.Manager import Manager
from message_queue.proto.ImageMessage_pb2 import ImageMessage, TrackMode
@ -37,13 +41,20 @@ from message_queue.proto.ConnectStatus_pb2 import ConnectStatus
from video_streamer.gst_video_streamer import GstVideoStreamer
import cv2
import os
import time # Ensure time module is imported
config_manager = ConfigManager('config.yaml')
rtsp_links = config_manager.configs['rtsp_links'].get()
debug = config_manager.configs['debug'].get()
def findUsbCams():
cv_cameras = []
for i in range(50):
cap = cvStreamer(i)
if cap.isOpened():
cv_cameras.append(cap)
return cv_cameras
def handle_camera_status(status: int):
m = Message()
m.msgType = MessageType.MESSAGE_TYPE_CAMERA_CONNECTION_STATUS
@ -53,72 +64,145 @@ def handle_camera_status(status: int):
# Helper class to track client connection status
class ConnectionTracker:
def __init__(self):
self.last_message_time = time.time() # Use time.time() to get the current time
self.timeout = 15 # Timeout in seconds (adjust as needed)
self.last_message_time = time.time()
self.timeout = 15 # 15-second timeout
self.last_client_ip = None # Track last connected client IP
def update_last_message_time(self, client_ip=None):
self.last_message_time = time.time()
if client_ip:
self.last_client_ip = client_ip # Update last known client
def is_client_active(self):
"""Check if the last client is still active within the last 15 seconds."""
return (time.time() - self.last_message_time) < self.timeout
# Create an instance of ConnectionTracker
connection_tracker = ConnectionTracker()
def update_last_message_time(self):
self.last_message_time = time.time() # Update with the current time
def is_client_connected(self):
return (time.time() - self.last_message_time) < self.timeout # Use time.time()
class ConnectionThread(threading.Thread):
def __init__(self):
super().__init__()
self.running = True
# Create an instance of ConnectionTracker
connection_tracker = ConnectionTracker()
def run(self):
while self.running:
def check_client_connection():
if not connection_tracker.is_client_connected():
print("Client disconnected. Searching for another client...")
cl_ip, _ = start_discovery_service(12345)
ic(cl_ip)
# Reinitialize the Manager with the new client addressimport time # Ensure time module is imported
# Helper class to track client connection status
class ConnectionTracker:
def __init__(self):
self.last_message_time = time.time() # Use time.time() to get the current time
self.timeout = 15 # Timeout in seconds (adjust as needed)
sleep(0.5)
def update_last_message_time(self):
self.last_message_time = time.time() # Update with the current time
if connection_tracker.last_client_ip:
def is_client_connected(self):
return (time.time() - self.last_message_time) < self.timeout # Use time.time()
if debug:
print(f"Checking if last client {connection_tracker.last_client_ip} is still available...")
# Create an instance of ConnectionTracker
connection_tracker = ConnectionTracker()
if self.query_last_client(connection_tracker.last_client_ip):
connection_tracker.update_last_message_time()
if debug:
print(f"Last client {connection_tracker.last_client_ip} responded. Continuing...")
continue # Skip discovering a new client
if not connection_tracker.is_client_active():
def check_client_connection():
if not connection_tracker.is_client_connected():
print("Client disconnected. Searching for another client...")
cl_ip, _ = start_discovery_service(12345)
print(cl_ip)
print("Client inactive for 15 seconds. Searching for another client...")
cl_ip, _ = self.start_discovery_service(12345)
print(f"New client found: {cl_ip}")
# Reinitialize the Manager with the new client address
global manager
manager = Manager(f"tcp://{cl_ip}:5558", f"tcp://{cl_ip}:5557")
manager.start(manager_callback) # Restart the Manager and re-register the callback
manager.start(manager_callback)
connection_tracker.update_last_message_time(cl_ip) # Update with new client
def query_last_client(self, client_ip):
"""Send a heartbeat packet to the last known client IP on port 29170 and wait for a response."""
if debug:
print(f"Sending heartbeat to {client_ip}:29170") # Debugging
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.settimeout(5) # 5-second timeout
heartbeat_port = 29170 # New port for heartbeat
try:
sock.sendto(b"HEARTBEAT", (client_ip, heartbeat_port)) # Send heartbeat message
data, addr = sock.recvfrom(1024) # Wait for response
if debug:
print(f"Received response from {addr}: {data.decode()}") # Debugging
if data.decode() == "HEARTBEAT_ACK":
connection_tracker.update_last_message_time() # Update the last message time
if debug:
print(f"Client {client_ip} is still responding.")
return True
except socket.timeout:
print(f"Client {client_ip} did not respond. Marking as inactive.")
finally:
sock.close()
return False # Client did not respond
def start_discovery_service(self, port):
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(('0.0.0.0', port))
print(f"Discovery service listening on port {port}...")
while True:
data, addr = sock.recvfrom(1024)
if data.decode() == "DISCOVER_SERVER":
print(f"Received discovery request from {addr}")
sock.sendto(b"SERVER_RESPONSE", addr)
break
sock.close()
return addr
def stop(self):
self.running = False
connection_tracker.update_last_message_time() # Reset the timer after reconnecting
if __name__ == '__main__':
QCoreApplication.setAttribute(Qt.AA_EnableHighDpiScaling)
app = QCoreApplication(sys.argv)
videoStreamers: List[GstVideoStreamer] = []
streamerThreads = []
# cv_cameras = []
# for i in range(3):
# cap = cvStreamer(i)
# if cap.isOpened():
# cv_cameras.append(cap)
videoStreamers = []
for idx, rtsp_link in enumerate(rtsp_links):
videoStreamer = GstVideoStreamer(rtsp_link, [1920, 1080, 3], str(idx), fps=15)
videoStreamer.cameraStatus.connect(handle_camera_status)
print(f'{videoStreamer.id} connected')
videoStreamers.append(videoStreamer)
core = Core(videoStreamers)
tracker = Tracker()
detector = Detector(classes=[0, 2, 5, 7])
sources = findUsbCams()
if len(sources) >= 2:
core = Core(sources,tracker,detector)
else:
core = Core(videoStreamers, tracker, detector)
def manager_callback(msg_str):
msg = Message()
msg.ParseFromString(msg_str)
connection_tracker.update_last_message_time() # Update the last message time
if msg.msgType == MessageType.MESSAGE_TYPE_TOGGLE_TRACK:
if msg.track_cmd.command == TrackCommand.TRACK_COMMAND_STOP:
@ -130,8 +214,12 @@ if __name__ == '__main__':
elif msg.msgType == MessageType.MESSAGE_TYPE_TRACK_SETTINGS:
core.set_thickness(msg.track_settings.thickness)
elif msg.msgType == MessageType.MESSAGE_TYPE_SWITCH_CAMERA:
print(f"switch camera detected ,primary value is : {msg.cam_switch.primaryCamType}")
print(f"switch camera detected ,secondary value is : {msg.cam_switch.secondaryCamType}")
core.set_source(msg.cam_switch.primaryCamType)
elif msg.msgType == MessageType.MESSAGE_TYPE_SET_CAMERA:
if msg.cam_set.cameraSource == 1:
print(f"set camera source to network")
ip = msg.cam_set.ip
videoStreamers = []
for src in range(2):
@ -142,6 +230,18 @@ if __name__ == '__main__':
print(f'{videoStreamer.id} connected')
videoStreamers.append(videoStreamer)
core.set_video_sources(videoStreamers)
# videoStreamers = []
# for idx, rtsp_link in enumerate(rtsp_links):
# videoStreamer = GstVideoStreamer(rtsp_link, [1920, 1080, 3], str(idx), fps=15)
# videoStreamer.cameraStatus.connect(handle_camera_status)
# print(f'{videoStreamer.id} connected')
# videoStreamers.append(videoStreamer)
# core.set_video_sources(videoStreamers)
else:
sources = findUsbCams()
if len(sources) >= 2 :
print("set camera source to captutre card")
core.set_video_sources(findUsbCams())
import socket
@ -156,24 +256,32 @@ if __name__ == '__main__':
print(f"Received discovery request from {addr}")
sock.sendto(b"SERVER_RESPONSE", addr)
break
sock.close()
return addr
cl_ip, _ = start_discovery_service(12345)
print(cl_ip)
global manager
manager = Manager(f"tcp://{cl_ip}:5558", f"tcp://{cl_ip}:5557")
manager.start(manager_callback)
def gotNewFrame(bboxes, id_, isDetection, ctime):
#print(f"Got new frame, bboxes : {bboxes} Id: {id} Is detection {isDetection}")
m = Message()
m.msgType = MessageType.MESSAGE_TYPE_IMAGE
m.image.timestamp = int(ctime.value)
for bbox in bboxes:
# Skip if bbox is None, doesn't have exactly 4 elements, or contains None values
if bbox is None or len(bbox) != 4 or not all(element is not None for element in bbox):
continue
# Add the bounding box to the image
box = m.image.boxes.add()
box.x = bbox[0]
box.y = bbox[1]
box.w = bbox[2]
box.h = bbox[3]
box.x, box.y, box.w, box.h = bbox
m.image.camType = id_
if isDetection:
m.image.trackMode = TrackMode.TRACK_MODE_DETECT
@ -193,12 +301,13 @@ if __name__ == '__main__':
core.newFrame.connect(gotNewFrame)
core.coordsUpdated.connect(gotCoords)
# Set up the QTimer to check client connection every 10 seconds
timer = QTimer()
timer.timeout.connect(check_client_connection)
timer.start(10000) # 10 seconds
# Start the connection thread
connection_thread = ConnectionThread()
connection_thread.start()
try:
app.exec_()
except KeyboardInterrupt:
connection_thread.stop()
connection_thread.join()
sys.exit(0)

2
config.yaml

@ -6,4 +6,4 @@ rtsp_links: [
thickness: 2
debug: false
debug: False

142
core.py

@ -1,34 +1,40 @@
#import os
#os.environ['YOLO_VERBOSE'] = "false"
import datetime
import threading
import pygame
import cv2
import numpy as np
import torch
from threading import Event, Thread
from typing import List
import numpy as np
from PyQt5.QtCore import QThread, pyqtSlot, pyqtSignal, QUrl, QDir, pyqtProperty
#from icecream import ic
from matplotlib import pyplot as plt
from detector import Detector
from detector.utils import get_bbox_by_point
from tracker import Tracker
from video_streamer.videostreamer import VideoStreamer
from time import sleep
import time
from PyQt5.QtCore import QObject, pyqtSignal
import ctypes
from ctypes import c_int64
from server import rtsp_server, run_server, RTSPServer
showTrack = False
class Core(QThread):
newFrame = pyqtSignal(object, int, bool,ctypes.c_int64)
newFrame = pyqtSignal(object, int, bool, ctypes.c_int64)
coordsUpdated = pyqtSignal(int, object, bool)
def __init__(self, video_sources: List[VideoStreamer], parent=None):
def __init__(self, video_sources, tracker=None, detector=None, parent=None):
super(QThread, self).__init__(parent)
self.__detector = Detector(classes=[0, 2, 5, 7])
self.__tracker = Tracker()
self.__detector = detector
self.__tracker = tracker
self.__rtspserver = rtsp_server
threading.Thread(target=run_server, daemon=True).start()
self.__video_sources = video_sources
self.__processing_source = video_sources[0]
@ -44,7 +50,12 @@ class Core(QThread):
self.__tracking_thread = None
self.__processing_id = 0
# ic()
self.__frame = None # Frame property for Pygame
@pyqtProperty(np.ndarray)
def frame(self):
return self.__frame
def set_thickness(self, thickness: int):
self.__thickness = thickness
@ -53,13 +64,15 @@ class Core(QThread):
self.__processing_source = self.__video_sources[source_id]
self.__processing_id = source_id
def set_video_sources(self, video_sources: List[VideoStreamer]):
def set_video_sources(self, video_sources):
if len(video_sources) >= 2:
self.__video_sources = video_sources
self.set_source(0)
def __detection(self):
while self.__is_detecting:
try:
torch.cuda.empty_cache()
source = self.__processing_source
roi = self.__detection_roi
frame = source.get_frame()
@ -71,10 +84,8 @@ class Core(QThread):
bbox = result[1:]
bbox[:2] += roi[:2]
global_bboxes.append(bbox)
# color = (0, 0, 255) if cls == 0 else (80, 127, 255)
# self.__draw_bbox(frame, bbox, color)
self.newFrame.emit(global_bboxes, self.__processing_id, True)
self.newFrame.emit(global_bboxes, self.__processing_id, True, c_int64(int(time.time() * 1e3)))
self.__detection_bboxes = np.array(global_bboxes)
self.__detection_frame = frame.copy()
sleep(0.03)
@ -82,21 +93,96 @@ class Core(QThread):
print(e)
sleep(0.1)
def __tracking(self):
source = self.__processing_source
if showTrack:
pygame.init()
# Get actual screen resolution
info = pygame.display.Info()
screen_width, screen_height = info.current_w, info.current_h
screen = pygame.display.set_mode((screen_width, screen_height), pygame.FULLSCREEN)
pygame.display.set_caption('Tracking Frame')
clock = pygame.time.Clock() # Add a clock to control frame rate
while self.__is_tracking:
if showTrack:
for event in pygame.event.get(): # Prevent freezing by handling events
if event.type == pygame.QUIT:
pygame.quit()
return
ctime = c_int64(int(time.time() * 1000)) # Convert to c_int64
frame = source.get_frame()
bbox, success = self.__tracker.update(frame)
center = None
if bbox is not None:
center = bbox[:2] + bbox[2:] // 2
self.coordsUpdated.emit(self.__processing_id, center, success)
self.newFrame.emit([bbox], self.__processing_id, False, ctime)
sleep(0.01)
else:
self.newFrame.emit([bbox], self.__processing_id, False, ctime)
sleep(0.05)
x, y, w, h = map(int, bbox)
box_color = (0, 255, 0) if success else (255, 0, 0)
cv2.rectangle(frame, (x, y), (x + w, y + h), box_color, 2)
self.__rtspserver.update_frame(frame)
if showTrack:
# Convert OpenCV frame (BGR) to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 2.25
font_color = (255, 255, 0)
thickness = 6
position = (50, 450) # Bottom-left corner of the text in the image
now = datetime.datetime.now()
time_string = now.strftime("%H:%M:%S.%f")[:-3]
# 4. Use cv2.putText() to write time on the image
cv2.putText(frame, time_string, position, font, font_scale, font_color, thickness, cv2.LINE_AA)
cv2.putText(frame, f"{ctime}", (50, 380), font, font_scale, (255,255,255), thickness, cv2.LINE_AA)
# print(ctime)
frame = cv2.flip(frame, 1) # Flip horizontally
# Resize frame while maintaining aspect ratio
frame_height, frame_width, _ = frame.shape
aspect_ratio = frame_width / frame_height
if aspect_ratio > (screen_width / screen_height): # Wider than screen
new_width = screen_width
new_height = int(screen_width / aspect_ratio)
else: # Taller than screen
new_height = screen_height
new_width = int(screen_height * aspect_ratio)
resized_frame = cv2.resize(frame, (new_width, new_height))
# Convert to Pygame surface without unnecessary rotation
frame_surface = pygame.surfarray.make_surface(resized_frame)
# Optional: If rotation is needed, use pygame.transform.rotate()
frame_surface = pygame.transform.rotate(frame_surface, -90) # Example rotation
# Center the frame
x_offset = (screen_width - new_width) // 2
y_offset = (screen_height - new_height) // 2
screen.fill((0, 0, 0)) # Clear screen
screen.blit(frame_surface, (x_offset, y_offset))
pygame.display.flip()
clock.tick(30) # Limit FPS to prevent excessive CPU usage
def start_detect(self, x: int, y: int, w: int, h: int):
self.__detection_roi = [x, y, x + w, y + h]
@ -110,12 +196,13 @@ class Core(QThread):
def stop_detection(self):
self.__is_detecting = False
if self.__detection_thread is not None:
if self.__detection_thread is not None and self.__detection_thread.is_alive():
self.__detection_thread.join()
self.__detection_thread = None
def start_track(self, x: int, y: int, w: int = 0, h: int = 0):
print(f"start tracking: {x}, {y}, {w}, {h}")
try:
self.__is_detecting = False
self.__is_tracking = False
@ -140,21 +227,22 @@ class Core(QThread):
if self.__tracking_thread is not None:
self.__tracking_thread.join()
self.stop_track()
self.__is_tracking = True
self.__tracking_thread = Thread(target=self.__tracking)
self.__tracking_thread.start()
sleep(0.03)
def stop_track(self):
if showTrack:
pygame.quit()
print("stop tracking")
self.stop_detection()
self.__tracker.stop()
self.__is_tracking = False
if self.__tracking_thread is not None:
self.__tracking_thread.join()
self.__tracking_thread = None
def __draw_bbox(self, img: np.ndarray, bbox, color):
thickness = self.__thickness
# cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[2] + bbox[0], bbox[3] + bbox[1]),
# color, thickness)
cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[2] + bbox[0], bbox[3] + bbox[1]),
color, thickness)

52
cvStreamer.py

@ -0,0 +1,52 @@
import cv2
from pywt.version import release
class cvStreamer():
def __init__(self, idx):
self.cap = cv2.VideoCapture(idx)
self.idx = idx
def isOpened(self):
isOpen = self.cap.isOpened()
if not isOpen:
self.release()
else:
print(f"usb cam open at {self.idx}")
return isOpen
def release(self):
self.cap.release()
def get_frame(self):
_, frame = self.cap.read()
# Get the original dimensions of the frame
height, width = frame.shape[:2]
# Define the maximum dimensions
max_width = 1920
max_height = 1080
# Calculate the aspect ratio
aspect_ratio = width / height
# Resize the frame if it exceeds the maximum dimensions
if width > max_width or height > max_height:
if aspect_ratio > 1: # Landscape orientation
new_width = max_width
new_height = int(new_width / aspect_ratio)
else: # Portrait orientation
new_height = max_height
new_width = int(new_height * aspect_ratio)
# Resize the frame
frame = cv2.resize(frame, (new_width, new_height))
return frame
def __del__(self):
self.release()

2
detector/demo.py

@ -7,7 +7,7 @@ from utils import get_bbox_by_point
if __name__ == '__main__':
detector = Detector(classes=[0, 2, 5, 7])
cap = cv2.VideoCapture(1)
cap = cv2.VideoCapture(0)
display_name = 'detector'
cv2.namedWindow(display_name, cv2.WINDOW_NORMAL)
cv2.setWindowProperty(display_name, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)

47
gpuMonitor.py

@ -0,0 +1,47 @@
import pynvml
import time
from colorama import Fore, Style, init
import os
# Initialize colorama
init(autoreset=True)
def monitor_gpu_ram_usage(interval=2, threshold_gb=2):
pynvml.nvmlInit()
# Initialize NVML
try:
device_count = pynvml.nvmlDeviceGetCount()
print(f"Found {device_count} GPU(s).")
while True:
for i in range(device_count):
handle = pynvml.nvmlDeviceGetHandleByIndex(i)
info = pynvml.nvmlDeviceGetMemoryInfo(handle)
print(f"GPU {i}:")
print(f" Total RAM: {info.total / 1024 ** 2:.2f} MB")
if(info.used / 1024 ** 2 >= 2.5 * 1024 ):
print(Fore.RED + f" Used RAM: {info.used / 1024 ** 2:.2f} MB")
os.system("aplay /home/rog/repos/Tracker/NE-Smart-Tracker/Oxygen-Sys-Warning.wav")
else:
print(f" Used RAM: {info.used / 1024 ** 2:.2f} MB")
print(f" Free RAM: {info.free / 1024 ** 2:.2f} MB")
print(Fore.GREEN + "-" * 30)
print(Fore.GREEN)
time.sleep(interval) # Wait for the specified interval before checking again
except KeyboardInterrupt:
print("Monitoring stopped by user.")
finally:
# Shutdown NVML
pynvml.nvmlShutdown()
if __name__ == "__main__":
monitor_gpu_ram_usage(interval=2, threshold_gb=2) # Check every 2 seconds, threshold is 2 GB

1
message_queue/proto/SetCameraMessage.proto

@ -3,4 +3,5 @@ syntax = "proto3";
message SetCameraMessage {
string ip = 1;
int32 port = 2;
int32 cameraSource = 3;
}

11
message_queue/proto/SetCameraMessage_pb2.py

@ -19,7 +19,7 @@ DESCRIPTOR = _descriptor.FileDescriptor(
syntax='proto3',
serialized_options=None,
create_key=_descriptor._internal_create_key,
serialized_pb=b'\n\x16SetCameraMessage.proto\",\n\x10SetCameraMessage\x12\n\n\x02ip\x18\x01 \x01(\t\x12\x0c\n\x04port\x18\x02 \x01(\x05\x62\x06proto3'
serialized_pb=b'\n\x16SetCameraMessage.proto\"B\n\x10SetCameraMessage\x12\n\n\x02ip\x18\x01 \x01(\t\x12\x0c\n\x04port\x18\x02 \x01(\x05\x12\x14\n\x0c\x63\x61meraSource\x18\x03 \x01(\x05\x62\x06proto3'
)
@ -47,6 +47,13 @@ _SETCAMERAMESSAGE = _descriptor.Descriptor(
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
_descriptor.FieldDescriptor(
name='cameraSource', full_name='SetCameraMessage.cameraSource', index=2,
number=3, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
],
extensions=[
],
@ -60,7 +67,7 @@ _SETCAMERAMESSAGE = _descriptor.Descriptor(
oneofs=[
],
serialized_start=26,
serialized_end=70,
serialized_end=92,
)
DESCRIPTOR.message_types_by_name['SetCameraMessage'] = _SETCAMERAMESSAGE

112
server.py

@ -0,0 +1,112 @@
import cv2
import gi
import threading
import numpy as np
gi.require_version('Gst', '1.0')
gi.require_version('GstRtspServer', '1.0')
from gi.repository import Gst, GstRtspServer, GLib
import socket
def get_local_ip():
try:
# Create a socket object
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# Connect to an external server (doesn't actually send any data)
s.connect(("8.8.8.8", 80))
# Get the local IP address
local_ip = s.getsockname()[0]
# Close the socket
s.close()
return local_ip
except Exception as e:
return str(e)
class VideoStream(GstRtspServer.RTSPMediaFactory):
def __init__(self, fps=25, width=1920, height=1080):
super(VideoStream, self).__init__()
self.fps = fps
self.width = width
self.height = height
self.frame = np.zeros((height, width, 3), dtype=np.uint8) # Black frame initially
self.lock = threading.Lock()
def update_frame(self, frame):
"""Externally updates the current frame."""
with self.lock:
self.frame = cv2.resize(frame, (self.width, self.height)) # Resize if necessary
def on_need_data(self, src, length):
"""Provides frames when the pipeline requests data."""
with self.lock:
frame_rgb = cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
data = frame_rgb.tobytes() # Convert to bytes
buf = Gst.Buffer.new_allocate(None, len(data), None)
buf.fill(0, data)
buf.duration = Gst.SECOND // self.fps
buf.pts = buf.dts = Gst.CLOCK_TIME_NONE
src.emit("push-buffer", buf)
def do_create_element(self, url):
"""Creates the GStreamer pipeline for RTSP streaming."""
pipeline_str = (
"appsrc name=source is-live=true format=GST_FORMAT_TIME "
"caps=video/x-raw,format=RGB,width={},height={},framerate={}/1 "
"! videoconvert ! video/x-raw,format=I420 "
"! nvh264enc preset=low-latency rc-mode=cbr bitrate=2500 gop-size=7 zerolatency=true "
"! h264parse ! rtph264pay config-interval=1 name=pay0 pt=96"
).format(self.width, self.height, self.fps)
pipeline = Gst.parse_launch(pipeline_str)
src = pipeline.get_by_name("source")
src.connect("need-data", self.on_need_data)
return pipeline
class RTSPServer:
def __init__(self, ip="0.0.0.0", port=8554, mount_point="/stream"):
Gst.init(None)
self.server = GstRtspServer.RTSPServer()
self.server.set_address(ip)
self.server.set_service(str(port))
self.video_stream = VideoStream()
self.server.get_mount_points().add_factory(mount_point, self.video_stream)
self.server.attach(None)
def start(self):
print(f"RTSP Server running at rtsp://{self.server.get_address()}:{self.server.get_service()}/stream")
loop = GLib.MainLoop()
loop.run()
def update_frame(self, frame):
"""Externally updates the current frame for streaming."""
self.video_stream.update_frame(frame)
# Global server instance
rtsp_server = RTSPServer(get_local_ip(),41231)
def run_server():
rtsp_server.start()
# def stream_webcam():
# cap = cv2.VideoCapture("/home/mht/Downloads/bcd2890d71caaf0e095b95c9b525973f61186656-360p.mp4") # Open webcam
# while cap.isOpened():
# ret, frame = cap.read()
# if ret:
# rtsp_server.update_frame(frame) # Send frame to RTSP server
# if __name__ == "__main__":
# # Start RTSP server in a separate thread
# threading.Thread(target=run_server, daemon=True).start()
#
# # Stream webcam frames
# stream_webcam()

1
tracker/ltr/external/PreciseRoIPooling/pytorch/prroi_pool/functional.py

@ -12,6 +12,7 @@
import torch
import torch.autograd as ag
__all__ = ['prroi_pool2d']

2
tracker/ltr/models/backbone/resnet.py

@ -6,6 +6,7 @@ from torchvision.models.resnet import model_urls
from .base import Backbone
class Bottleneck(nn.Module):
expansion = 4
@ -22,6 +23,7 @@ class Bottleneck(nn.Module):
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x

1
tracker/ltr/models/bbreg/atom_iou_net.py

@ -2,6 +2,7 @@ import torch.nn as nn
import torch
from ltr.models.layers.blocks import LinearBlock
from ltr.external.PreciseRoIPooling.pytorch.prroi_pool import PrRoIPool2D
torch.cuda.empty_cache()
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):

2
tracker/ltr/models/layers/distance.py

@ -14,12 +14,14 @@ class DistanceMap(nn.Module):
super().__init__()
self.num_bins = num_bins
self.bin_displacement = bin_displacement
torch.cuda.empty_cache()
def forward(self, center, output_sz):
"""Create the distance map.
args:
center: Torch tensor with (y,x) center position. Dims (batch, 2)
output_sz: Size of output distance map. 2-dimensional tuple."""
torch.cuda.empty_cache()
center = center.view(-1,2)

2
tracker/ltr/models/target_classifier/features.py

@ -4,9 +4,11 @@ from ltr.models.layers.normalization import InstanceL2Norm
def residual_bottleneck(feature_dim=256, num_blocks=1, l2norm=True, final_conv=False, norm_scale=1.0, out_dim=None,
interp_cat=False, final_relu=False, final_pool=False, input_dim=None, final_stride=1):
"""Construct a network block based on the Bottleneck block used in ResNet."""
if out_dim is None:
out_dim = feature_dim
if input_dim is None:

6
tracker/pytracking/features/augmentation.py

@ -6,16 +6,18 @@ import cv2 as cv
import random
from pytracking.features.preprocessing import numpy_to_torch, torch_to_numpy
class Transform:
"""Base data augmentation transform class."""
def __init__(self, output_sz = None, shift = None):
self.output_sz = output_sz
self.shift = (0,0) if shift is None else shift
torch.cuda.empty_cache()
def crop_to_output(self, image):
torch.cuda.empty_cache()
if isinstance(image, torch.Tensor):
imsz = image.shape[2:]
if self.output_sz is None:
@ -67,6 +69,7 @@ class Rotate(Transform):
super().__init__(output_sz, shift)
self.angle = math.pi * angle/180
def __call__(self, image, is_mask=False):
if isinstance(image, torch.Tensor):
return self.crop_to_output(numpy_to_torch(self(torch_to_numpy(image))))
@ -90,6 +93,7 @@ class Blur(Transform):
self.filter[0] = self.filter[0].view(1,1,-1,1) / self.filter[0].sum()
self.filter[1] = self.filter[1].view(1,1,1,-1) / self.filter[1].sum()
def __call__(self, image, is_mask=False):
if isinstance(image, torch.Tensor):
sz = image.shape[2:]

7
tracker/pytracking/features/preprocessing.py

@ -4,10 +4,12 @@ import numpy as np
def numpy_to_torch(a: np.ndarray):
torch.cuda.empty_cache()
return torch.from_numpy(a).float().permute(2, 0, 1).unsqueeze(0)
def torch_to_numpy(a: torch.Tensor):
torch.cuda.empty_cache()
return a.squeeze(0).permute(1,2,0).numpy()
@ -20,7 +22,7 @@ def sample_patch_transformed(im, pos, scale, image_sz, transforms, is_mask=False
image_sz: Size to resize the image samples to before extraction.
transforms: A set of image transforms to apply.
"""
torch.cuda.empty_cache()
# Get image patche
im_patch, _ = sample_patch(im, pos, scale*image_sz, image_sz, is_mask=is_mask)
@ -39,6 +41,7 @@ def sample_patch_multiscale(im, pos, scales, image_sz, mode: str='replicate', ma
mode: how to treat image borders: 'replicate' (default), 'inside' or 'inside_major'
max_scale_change: maximum allowed scale change when using 'inside' and 'inside_major' mode
"""
torch.cuda.empty_cache()
if isinstance(scales, (int, float)):
scales = [scales]
@ -62,7 +65,7 @@ def sample_patch(im: torch.Tensor, pos: torch.Tensor, sample_sz: torch.Tensor, o
mode: how to treat image borders: 'replicate' (default), 'inside' or 'inside_major'
max_scale_change: maximum allowed scale change when using 'inside' and 'inside_major' mode
"""
torch.cuda.empty_cache()
# if mode not in ['replicate', 'inside']:
# raise ValueError('Unknown border mode \'{}\'.'.format(mode))

1
tracker/pytracking/libs/dcf.py

@ -3,6 +3,7 @@ import torch
def max2d(a: torch.Tensor) -> (torch.Tensor, torch.Tensor):
"""Computes maximum and argmax in the last two dimensions."""
torch.cuda.empty_cache()
max_val_row, argmax_row = torch.max(a, dim=-2)
max_val, argmax_col = torch.max(max_val_row, dim=-1)

3
tracker/pytracking/tracker/dimp/dimp.py

@ -65,6 +65,7 @@ class DiMP():
def track(self, image) -> dict:
torch.cuda.empty_cache()
# Convert image
im = numpy_to_torch(image)
@ -213,7 +214,7 @@ class DiMP():
# Compute augmentation size
aug_expansion_factor = self.params.get('augmentation_expansion_factor', None)
ic(self.params.get('augmentation_expansion_factor', None))
aug_expansion_sz = (self.img_sample_sz * aug_expansion_factor).long()

2
tracker/pytracking/utils/params.py

@ -5,7 +5,7 @@ class TrackerParams:
"""Class for tracker parameters."""
image_sample_size = 18 * 16
search_area_scale = 5
search_area_scale = 7
# Learning parameters
sample_memory_size = 50

BIN
video_streamer/vision_service.cpython-37m-x86_64-linux-gnu.so

Loading…
Cancel
Save