#include "bb_regressor.h" #include #include #include #include #include #include // Add CUDA includes for required CUDA implementation #include #include // Use the PrRoIPooling implementation #include "prroi_pooling_gpu.h" #include "prroi_pooling_gpu_impl.cuh" // PrRoIPool2D implementation (requires CUDA) PrRoIPool2D::PrRoIPool2D(int pooled_height, int pooled_width, float spatial_scale) : pooled_height_(pooled_height), pooled_width_(pooled_width), spatial_scale_(spatial_scale) {} torch::Tensor PrRoIPool2D::forward(torch::Tensor feat, torch::Tensor rois) { // Print shape info for debugging std::cout << " PrRoIPool2D inputs: " << std::endl; std::cout << " Features: [" << feat.size(0) << ", " << feat.size(1) << ", " << feat.size(2) << ", " << feat.size(3) << "]" << std::endl; std::cout << " ROIs: [" << rois.size(0) << ", " << rois.size(1) << "]" << std::endl; std::cout << " Pooled size: [" << pooled_height_ << ", " << pooled_width_ << "]" << std::endl; std::cout << " Spatial scale: " << spatial_scale_ << std::endl; // Calculate output shape int channels = feat.size(1); int num_rois = rois.size(0); // Ensure both tensors are on CUDA if (!feat.is_cuda() || !rois.is_cuda()) { throw std::runtime_error("PrRoIPool2D requires CUDA tensors - CPU mode is not supported"); } feat = feat.contiguous(); // Ensure contiguous rois = rois.contiguous(); // Ensure contiguous // Create output tensor on the same device (CUDA) auto output = torch::zeros({num_rois, channels, pooled_height_, pooled_width_}, feat.options()); // feat.options() will be CUDA // DO NOT Copy tensors to CPU. Pass GPU pointers directly. // auto feat_cpu = feat.to(torch::kCPU).contiguous(); // auto rois_cpu = rois.to(torch::kCPU).contiguous(); // auto output_cpu = output.to(torch::kCPU).contiguous(); // Call the C wrapper function with GPU data pointers std::cout << " Calling prroi_pooling_forward_cuda with GPU data..." << std::endl; prroi_pooling_forward_cuda( feat.data_ptr(), rois.data_ptr(), // Assuming rois is already float, otherwise needs care output.data_ptr(), channels, feat.size(2), feat.size(3), num_rois, pooled_height_, pooled_width_, spatial_scale_ ); std::cout << " prroi_pooling_forward_cuda completed" << std::endl; // No need to copy result back to GPU, output is already on GPU and was modified in-place. // output.copy_(output_cpu); return output; } // LinearBlock implementation LinearBlock::LinearBlock(int in_planes, int out_planes, int input_sz, bool bias, bool batch_norm, bool relu) { // Create the linear layer with proper input dimensions auto linear_options = torch::nn::LinearOptions(in_planes * input_sz * input_sz, out_planes).bias(bias); linear = register_module("linear", torch::nn::Linear(linear_options)); use_bn = batch_norm; if (use_bn) { // Use BatchNorm1d bn = register_module("bn", torch::nn::BatchNorm1d(torch::nn::BatchNorm1dOptions(out_planes))); } use_relu = relu; if (use_relu) { relu_ = register_module("relu", torch::nn::ReLU(torch::nn::ReLUOptions().inplace(true))); } } torch::Tensor LinearBlock::forward(torch::Tensor x) { // Reshape input for linear layer: x.reshape(x.shape[0], -1) x = x.reshape({x.size(0), -1}); x = linear->forward(x); if (use_bn) { // BatchNorm1d expects input of (N, C) or (N, C, L). Here x is (N, C). x = bn->forward(x); } if (use_relu) { x = relu_->forward(x); } // Ensure output is 2D (batch_size, features) // This might be redundant if x is already in the correct shape after relu/bn. x = x.reshape({x.size(0), -1}); return x; } // Create convolutional block torch::nn::Sequential BBRegressor::create_conv_block(int in_planes, int out_planes, int kernel_size, int stride, int padding, int dilation) { // Print dimensions for debugging std::cout << "Creating conv block: in_planes=" << in_planes << ", out_planes=" << out_planes << std::endl; torch::nn::Sequential seq; // Add convolutional layer seq->push_back(torch::nn::Conv2d(torch::nn::Conv2dOptions(in_planes, out_planes, kernel_size) .stride(stride).padding(padding).dilation(dilation).bias(true))); // Add batch normalization layer seq->push_back(torch::nn::BatchNorm2d(torch::nn::BatchNorm2dOptions(out_planes))); // Add ReLU activation seq->push_back(torch::nn::ReLU(torch::nn::ReLUOptions().inplace(true))); return seq; } // Helper function to verify BatchNorm dimensions void BBRegressor::verify_batchnorm_dimensions() { std::cout << "Verifying BatchNorm dimensions..." << std::endl; // Get children of conv3_1r std::cout << "conv3_1r has " << conv3_1r->size() << " modules" << std::endl; if (conv3_1r->size() > 1) { auto module = conv3_1r[1]; std::cout << "conv3_1r module[1] type: " << module->name() << std::endl; } // Get children of conv3_1t std::cout << "conv3_1t has " << conv3_1t->size() << " modules" << std::endl; if (conv3_1t->size() > 1) { auto module = conv3_1t[1]; std::cout << "conv3_1t module[1] type: " << module->name() << std::endl; } // Get children of conv3_2t std::cout << "conv3_2t has " << conv3_2t->size() << " modules" << std::endl; if (conv3_2t->size() > 1) { auto module = conv3_2t[1]; std::cout << "conv3_2t module[1] type: " << module->name() << std::endl; } } // Helper function to read file to bytes std::vector BBRegressor::read_file_to_bytes(const std::string& file_path) { std::ifstream file(file_path, std::ios::binary | std::ios::ate); if (!file.is_open()) { throw std::runtime_error("Could not open file: " + file_path); } std::streamsize size = file.tellg(); file.seekg(0, std::ios::beg); std::vector buffer(size); if (!file.read(buffer.data(), size)) { throw std::runtime_error("Could not read file: " + file_path); } return buffer; } // Load tensor from file torch::Tensor BBRegressor::load_tensor(const std::string& file_path) { try { // Read file into bytes first std::vector data = read_file_to_bytes(file_path); // Use pickle_load with byte data torch::Tensor tensor = torch::pickle_load(data).toTensor(); // Always move tensor to the specified device return tensor.to(device); } catch (const c10::Error& e) { std::cerr << "Error loading tensor from " << file_path << ": " << e.what() << std::endl; throw; } } // Constructor BBRegressor::BBRegressor(const std::string& model_weights_dir, torch::Device dev) : device(dev), model_dir(model_weights_dir), fc3_rt(256, 256, 5, true, true, true), fc4_rt(256, 256, 3, true, true, true) { // Check if model directory exists if (!fs::exists(model_dir)) { throw std::runtime_error("Model directory does not exist: " + model_dir); } // Initialize convolution blocks - match Python's AtomIoUNet implementation exactly std::cout << "Initializing conv blocks..." << std::endl; // In Python: self.conv3_1r = conv(input_dim[0], 128, kernel_size=3, stride=1) conv3_1r = create_conv_block(512, 128, 3, 1, 1, 1); // In Python: self.conv3_1t = conv(input_dim[0], 256, kernel_size=3, stride=1) conv3_1t = create_conv_block(512, 256, 3, 1, 1, 1); // In Python: self.conv3_2t = conv(256, pred_input_dim[0], kernel_size=3, stride=1) conv3_2t = create_conv_block(256, 256, 3, 1, 1, 1); // Update pooling sizes to match the Python model exactly // In Python: self.prroi_pool3r = PrRoIPool2D(3, 3, 1/8) prroi_pool3r = std::make_shared(3, 3, 0.125); // 1/8 scale for layer2 // In Python: self.prroi_pool3t = PrRoIPool2D(5, 5, 1/8) prroi_pool3t = std::make_shared(5, 5, 0.125); // 1/8 scale for layer2 // Create sequential blocks // In Python: self.fc3_1r = conv(128, 256, kernel_size=3, stride=1, padding=0) fc3_1r = create_conv_block(128, 256, 3, 1, 0, 1); // padding=0 for this layer // In Python: self.conv4_1r = conv(input_dim[1], 256, kernel_size=3, stride=1) conv4_1r = create_conv_block(1024, 256, 3, 1, 1, 1); // In Python: self.conv4_1t = conv(input_dim[1], 256, kernel_size=3, stride=1) conv4_1t = create_conv_block(1024, 256, 3, 1, 1, 1); // In Python: self.conv4_2t = conv(256, pred_input_dim[1], kernel_size=3, stride=1) conv4_2t = create_conv_block(256, 256, 3, 1, 1, 1); // In Python: self.prroi_pool4r = PrRoIPool2D(1, 1, 1/16) prroi_pool4r = std::make_shared(1, 1, 0.0625); // 1/16 scale for layer3 // In Python: self.prroi_pool4t = PrRoIPool2D(3, 3, 1/16) prroi_pool4t = std::make_shared(3, 3, 0.0625); // 1/16 scale for layer3 // In Python: self.fc34_3r = conv(256 + 256, pred_input_dim[0], kernel_size=1, stride=1, padding=0) fc34_3r = create_conv_block(512, 256, 1, 1, 0, 1); // kernel_size=1, padding=0 // In Python: self.fc34_4r = conv(256 + 256, pred_input_dim[1], kernel_size=1, stride=1, padding=0) fc34_4r = create_conv_block(512, 256, 1, 1, 0, 1); // kernel_size=1, padding=0 // Linear blocks - exactly match Python's implementation dimensions and parameters // In Python: self.fc3_rt = LinearBlock(pred_input_dim[0], pred_inter_dim[0], 5) fc3_rt = LinearBlock(256, 256, 5, true, true, true); // In Python: self.fc4_rt = LinearBlock(pred_input_dim[1], pred_inter_dim[1], 3) fc4_rt = LinearBlock(256, 256, 3, true, true, true); // In Python: self.iou_predictor = nn.Linear(pred_inter_dim[0]+pred_inter_dim[1], 1, bias=True) iou_predictor = torch::nn::Linear(torch::nn::LinearOptions(256 + 256, 1).bias(true)); // Load all weights load_weights(); // Set the model to evaluation mode this->eval(); // Move the model to the specified device this->to(device); // Debug information std::cout << "BB Regressor initialized in evaluation mode" << std::endl; } // Set the model to evaluation mode void BBRegressor::eval() { // Set all sequential modules to eval mode conv3_1r->eval(); conv3_1t->eval(); conv3_2t->eval(); fc3_1r->eval(); conv4_1r->eval(); conv4_1t->eval(); conv4_2t->eval(); fc34_3r->eval(); fc34_4r->eval(); // Linear blocks also need to be set to eval mode for BatchNorm layers fc3_rt.eval(); fc4_rt.eval(); // Set linear layers to eval mode (though this usually doesn't have any effect) iou_predictor->eval(); } // Load weights void BBRegressor::load_weights() { // Helper lambda to load weights for a sequential module auto load_sequential_weights = [this](torch::nn::Sequential& seq, const std::string& prefix) { try { // Load weights for conv layer (index 0) std::string weight_path = model_dir + "/" + prefix + "_0_weight.pt"; std::string bias_path = model_dir + "/" + prefix + "_0_bias.pt"; if (fs::exists(weight_path) && fs::exists(bias_path)) { auto conv_weight = load_tensor(weight_path); auto conv_bias = load_tensor(bias_path); // Get the conv2d module from sequential // Fix: Get the number of output channels from the weight tensor int out_channels = conv_weight.size(0); int in_channels = conv_weight.size(1); int kernel_size = conv_weight.size(2); std::cout << "Loading " << prefix << " conv weights: " << "[out_ch=" << out_channels << ", in_ch=" << in_channels << ", kernel=" << kernel_size << "]" << std::endl; // FIXED: Use the correct padding based on the layer name int padding = 1; // Default padding // Special cases for layers with different padding if (prefix == "fc3_1r" || prefix == "fc34_3r" || prefix == "fc34_4r") { padding = 0; // These layers use padding=0 in the Python implementation } std::cout << " Using padding=" << padding << " for " << prefix << std::endl; auto conv_options = torch::nn::Conv2dOptions(in_channels, out_channels, kernel_size) .stride(1).padding(padding).bias(true); auto conv_module = torch::nn::Conv2d(conv_options); // Set weights and bias conv_module->weight = conv_weight; conv_module->bias = conv_bias; // Debug info - print some weight stats std::cout << " Conv weight stats: mean=" << conv_weight.mean().item() << ", std=" << conv_weight.std().item() << ", min=" << conv_weight.min().item() << ", max=" << conv_weight.max().item() << std::endl; // Create a new sequence with the proper conv module auto new_seq = torch::nn::Sequential(); new_seq->push_back(conv_module); // Load batch norm parameters (index 1) std::string bn_weight_path = model_dir + "/" + prefix + "_1_weight.pt"; std::string bn_bias_path = model_dir + "/" + prefix + "_1_bias.pt"; std::string bn_mean_path = model_dir + "/" + prefix + "_1_running_mean.pt"; std::string bn_var_path = model_dir + "/" + prefix + "_1_running_var.pt"; if (fs::exists(bn_weight_path) && fs::exists(bn_bias_path) && fs::exists(bn_mean_path) && fs::exists(bn_var_path)) { auto bn_weight = load_tensor(bn_weight_path); auto bn_bias = load_tensor(bn_bias_path); auto bn_mean = load_tensor(bn_mean_path); auto bn_var = load_tensor(bn_var_path); // Important: Create BatchNorm with the correct number of features from the weights int num_features = bn_weight.size(0); std::cout << " Creating BatchNorm2d with num_features=" << num_features << std::endl; // Create a proper batch norm module with the right number of features auto bn_options = torch::nn::BatchNorm2dOptions(num_features) .eps(1e-5) // Match Python default .momentum(0.1) // Match Python default .affine(true) .track_running_stats(true); auto bn_module = torch::nn::BatchNorm2d(bn_options); // Set batch norm parameters bn_module->weight = bn_weight; bn_module->bias = bn_bias; bn_module->running_mean = bn_mean; bn_module->running_var = bn_var; // Debug info - print some batch norm stats std::cout << " BN weight stats: mean=" << bn_weight.mean().item() << ", std=" << bn_weight.std().item() << std::endl; std::cout << " BN running_mean stats: mean=" << bn_mean.mean().item() << ", std=" << bn_mean.std().item() << std::endl; std::cout << " BN running_var stats: mean=" << bn_var.mean().item() << ", std=" << bn_var.std().item() << std::endl; // Add the batch norm module to the sequence new_seq->push_back(bn_module); } // Add the ReLU module with inplace=true to match Python auto relu_options = torch::nn::ReLUOptions().inplace(true); new_seq->push_back(torch::nn::ReLU(relu_options)); // Replace the old sequence with the new one seq = new_seq; std::cout << "Loaded weights for " << prefix << std::endl; } else { std::cerr << "Weight files not found for " << prefix << std::endl; } } catch (const std::exception& e) { std::cerr << "Error loading weights for " << prefix << ": " << e.what() << std::endl; throw; // Re-throw to stop execution } }; // Load weights for linear blocks auto load_linear_block_weights = [this](LinearBlock& block, const std::string& prefix) { try { // Load weights for linear layer std::string weight_path = model_dir + "/" + prefix + "_linear_weight.pt"; std::string bias_path = model_dir + "/" + prefix + "_linear_bias.pt"; if (fs::exists(weight_path) && fs::exists(bias_path)) { auto linear_weight = load_tensor(weight_path); auto linear_bias = load_tensor(bias_path); // Set weights and bias block.linear->weight = linear_weight; block.linear->bias = linear_bias; // Load batch norm parameters std::string bn_weight_path = model_dir + "/" + prefix + "_bn_weight.pt"; std::string bn_bias_path = model_dir + "/" + prefix + "_bn_bias.pt"; std::string bn_mean_path = model_dir + "/" + prefix + "_bn_running_mean.pt"; std::string bn_var_path = model_dir + "/" + prefix + "_bn_running_var.pt"; if (fs::exists(bn_weight_path) && fs::exists(bn_bias_path) && fs::exists(bn_mean_path) && fs::exists(bn_var_path)) { auto bn_weight = load_tensor(bn_weight_path); auto bn_bias = load_tensor(bn_bias_path); auto bn_mean = load_tensor(bn_mean_path); auto bn_var = load_tensor(bn_var_path); // Set batch norm parameters block.bn->weight = bn_weight; block.bn->bias = bn_bias; block.bn->running_mean = bn_mean; block.bn->running_var = bn_var; } std::cout << "Loaded weights for " << prefix << std::endl; } else { std::cerr << "Weight files not found for " << prefix << std::endl; } } catch (const std::exception& e) { std::cerr << "Error loading weights for " << prefix << ": " << e.what() << std::endl; throw; // Re-throw to stop execution } }; // Load weights for all layers load_sequential_weights(conv3_1r, "conv3_1r"); load_sequential_weights(conv3_1t, "conv3_1t"); load_sequential_weights(conv3_2t, "conv3_2t"); load_sequential_weights(fc3_1r, "fc3_1r"); load_sequential_weights(conv4_1r, "conv4_1r"); load_sequential_weights(conv4_1t, "conv4_1t"); load_sequential_weights(conv4_2t, "conv4_2t"); load_sequential_weights(fc34_3r, "fc34_3r"); load_sequential_weights(fc34_4r, "fc34_4r"); load_linear_block_weights(fc3_rt, "fc3_rt"); load_linear_block_weights(fc4_rt, "fc4_rt"); // Load IoU predictor weights try { std::string weight_path = model_dir + "/iou_predictor_weight.pt"; std::string bias_path = model_dir + "/iou_predictor_bias.pt"; if (fs::exists(weight_path) && fs::exists(bias_path)) { auto weight = load_tensor(weight_path); auto bias = load_tensor(bias_path); iou_predictor->weight = weight; iou_predictor->bias = bias; std::cout << "Loaded weights for iou_predictor" << std::endl; } else { std::cerr << "Weight files not found for iou_predictor" << std::endl; } } catch (const std::exception& e) { std::cerr << "Error loading weights for iou_predictor: " << e.what() << std::endl; throw; // Re-throw to stop execution } } // Move model to device void BBRegressor::to(torch::Device device) { // Verify the device is a CUDA device if (!device.is_cuda()) { throw std::runtime_error("BBRegressor requires a CUDA device"); } this->device = device; // Move all components to device conv3_1r->to(device); conv3_1t->to(device); conv3_2t->to(device); fc3_1r->to(device); conv4_1r->to(device); conv4_1t->to(device); conv4_2t->to(device); fc3_rt.to(device); fc4_rt.to(device); iou_predictor->to(device); } // Get IoU features from backbone features std::vector BBRegressor::get_iou_feat(std::vector feat2_input) { torch::Tensor feat3_t_original = feat2_input[0]; torch::Tensor feat4_t_original = feat2_input[1]; // Reshape exactly as in Python implementation if (feat3_t_original.dim() == 5) { auto shape = feat3_t_original.sizes(); feat3_t_original = feat3_t_original.reshape({-1, shape[2], shape[3], shape[4]}); } if (feat4_t_original.dim() == 5) { auto shape = feat4_t_original.sizes(); feat4_t_original = feat4_t_original.reshape({-1, shape[2], shape[3], shape[4]}); } // Ensure inputs to conv are contiguous and kFloat32 (ResNet output should be float32) torch::Tensor feat3_t = feat3_t_original.contiguous().to(torch::kFloat32); torch::Tensor feat4_t = feat4_t_original.contiguous().to(torch::kFloat32); torch::NoGradGuard no_grad; torch::Tensor c3_t_1 = conv3_1t->forward(feat3_t); torch::Tensor c3_t = conv3_2t->forward(c3_t_1); torch::Tensor c4_t_1 = conv4_1t->forward(feat4_t); torch::Tensor c4_t = conv4_2t->forward(c4_t_1); return {c3_t.contiguous(), c4_t.contiguous()}; // Ensure output is contiguous and float32 } // Get modulation vectors for the target std::vector BBRegressor::get_modulation(std::vector feat, torch::Tensor bb) { // feat should contain two tensors: feat3_r and feat4_r (backbone features) // bb is the initial bounding box [batch_size, 1, 4] (x,y,w,h) or [batch_size, 4] // Ensure inputs are on the correct device torch::NoGradGuard no_grad; // Ensure no gradients are computed auto feat3_r = feat[0].to(device); auto feat4_r = feat[1].to(device); auto current_bb = bb.to(device); // Reshape bb if it's [batch, 1, 4] to [batch, 4] if (current_bb.dim() == 3 && current_bb.size(1) == 1) { current_bb = current_bb.squeeze(1); } if (current_bb.dim() != 2 || current_bb.size(1) != 4) { throw std::runtime_error("BBRegressor::get_modulation: bb must be [batch, 4] or [batch, 1, 4]"); } // Pass through early conv layers (reference branch) // Python: c3_r = self.conv3_1r(feat3_r) auto c3_r = conv3_1r->forward(feat3_r); // Prepare ROIs: convert bb from [x,y,w,h] to [batch_idx, x1,y1,x2,y2] int batch_size = current_bb.size(0); auto batch_idx = torch::arange(0, batch_size, current_bb.options().dtype(torch::kFloat)).unsqueeze(1); auto rois = torch::zeros({batch_size, 5}, current_bb.options()); rois.index_put_({torch::indexing::Slice(), 0}, batch_idx.squeeze(1)); // batch index rois.index_put_({torch::indexing::Slice(), 1}, current_bb.index({torch::indexing::Slice(), 0})); // x1 rois.index_put_({torch::indexing::Slice(), 2}, current_bb.index({torch::indexing::Slice(), 1})); // y1 rois.index_put_({torch::indexing::Slice(), 3}, current_bb.index({torch::indexing::Slice(), 0}) + current_bb.index({torch::indexing::Slice(), 2})); // x2 = x1 + w rois.index_put_({torch::indexing::Slice(), 4}, current_bb.index({torch::indexing::Slice(), 1}) + current_bb.index({torch::indexing::Slice(), 3})); // y2 = y1 + h rois = rois.to(device); // Ensure ROIs are on the correct device std::cout << " BBRegressor::get_modulation: Converted ROIs (first item): ["; if (batch_size > 0) { for (int j = 0; j < rois.size(1); j++) { std::cout << rois[0][j].item(); if (j < rois.size(1) - 1) std::cout << ", "; } } std::cout << "]" << std::endl; std::cout << " BBRegressor::get_modulation: c3_r shape: " << c3_r.sizes() << ", device: " << c3_r.device() << std::endl; // Python: roi3r = self.prroi_pool3r(c3_r, roi1) auto roi3r = prroi_pool3r->forward(c3_r, rois); std::cout << " BBRegressor::get_modulation: roi3r shape: " << roi3r.sizes() << std::endl; // Python: c4_r = self.conv4_1r(feat4_r) auto c4_r = conv4_1r->forward(feat4_r); std::cout << " BBRegressor::get_modulation: c4_r shape: " << c4_r.sizes() << ", device: " << c4_r.device() << std::endl; // Python: roi4r = self.prroi_pool4r(c4_r, roi1) auto roi4r = prroi_pool4r->forward(c4_r, rois); std::cout << " BBRegressor::get_modulation: roi4r shape: " << roi4r.sizes() << std::endl; // Python: fc3_r = self.fc3_1r(roi3r) // fc3_1r is a conv block: conv(128, 256, kernel_size=3, stride=1, padding=0) // Input roi3r is (batch, 128, 3, 3) -> Output fc3_r is (batch, 256, 1, 1) auto fc3_r = fc3_1r->forward(roi3r); std::cout << " BBRegressor::get_modulation: fc3_r shape: " << fc3_r.sizes() << std::endl; // Python: fc34_r = torch.cat((fc3_r, roi4r), dim=1) // fc3_r is (batch, 256, 1, 1), roi4r is (batch, 256, 1, 1) // Result fc34_r is (batch, 512, 1, 1) auto fc34_r = torch::cat({fc3_r, roi4r}, 1); std::cout << " BBRegressor::get_modulation: fc34_r shape: " << fc34_r.sizes() << std::endl; // Python: fc34_3_r = self.fc34_3r(fc34_r) // fc34_3r is conv(512, 256, kernel_size=1, stride=1, padding=0) // Output fc34_3_r is (batch, 256, 1, 1) auto mod_vec1 = fc34_3r->forward(fc34_r); std::cout << " BBRegressor::get_modulation: mod_vec1 (fc34_3_r) shape: " << mod_vec1.sizes() << std::endl; // Python: fc34_4_r = self.fc34_4r(fc34_r) // fc34_4r is conv(512, 256, kernel_size=1, stride=1, padding=0) // Output fc34_4_r is (batch, 256, 1, 1) auto mod_vec2 = fc34_4r->forward(fc34_r); std::cout << " BBRegressor::get_modulation: mod_vec2 (fc34_4_r) shape: " << mod_vec2.sizes() << std::endl; return {mod_vec1, mod_vec2}; } // Predict IoU for proposals torch::Tensor BBRegressor::predict_iou(std::vector modulation, std::vector feat, torch::Tensor proposals) { // Ensure all inputs are on the correct device auto target_device = device; // Assuming 'device' is a member of BBRegressor for (auto& t : feat) { t = t.to(target_device); } for (auto& m : modulation) { m = m.to(target_device); } proposals = proposals.to(target_device); // Get batch size and number of proposals int batch_size = proposals.size(0); int num_proposals = proposals.size(1); // Reshape proposals to [batch_size * num_proposals, 4] // and add batch index for PrRoIPooling auto proposals_view = proposals.reshape({batch_size * num_proposals, 4}); auto roi_batch_index = torch::arange(0, batch_size, proposals.options().dtype(torch::kInt)).unsqueeze(1); roi_batch_index = roi_batch_index.repeat_interleave(num_proposals, 0); auto roi = torch::cat(std::vector{roi_batch_index.to(proposals_view.options()), proposals_view}, 1); // Ensure ROI is on the correct device, matching features auto feat_device = feat[0].device(); roi = roi.to(feat_device); // Apply modulation vectors BEFORE PrRoIPooling auto mod0_4d = modulation[0].to(feat_device); auto mod1_4d = modulation[1].to(feat_device); if (mod0_4d.dim() == 2) { mod0_4d = mod0_4d.reshape({mod0_4d.size(0), mod0_4d.size(1), 1, 1}); } if (mod1_4d.dim() == 2) { mod1_4d = mod1_4d.reshape({mod1_4d.size(0), mod1_4d.size(1), 1, 1}); } // Ensure modulation vectors are broadcastable with features // Features (feat[0], feat[1]) are [batch_size, channels, H, W] // Modulation (mod0_4d, mod1_4d) should be [batch_size, channels, 1, 1] // If num_proposals > 1, the pooling happens on features that are effectively repeated. // The modulation is per-image, not per-proposal before pooling. torch::Tensor modulated_feat0 = feat[0] * mod0_4d; torch::Tensor modulated_feat1 = feat[1] * mod1_4d; // Apply ROI pooling to get features for each proposal from MODULATED features auto pooled_feat1 = prroi_pool3t->forward(modulated_feat0, roi); // Output: [batch_size * num_proposals, C, 5, 5] auto pooled_feat2 = prroi_pool4t->forward(modulated_feat1, roi); std::cout << " Modulated and Pooled shapes:" << std::endl; std::cout << " pooled_feat1 (from prroi_pool3t on modulated_feat0): [" << pooled_feat1.sizes() << "] dev: " << pooled_feat1.device() << std::endl; std::cout << " pooled_feat2 (from prroi_pool4t on modulated_feat1): [" << pooled_feat2.sizes() << "] dev: " << pooled_feat2.device() << std::endl; std::cout << " IoU predictor dimensions:" << std::endl; std::cout << " weight: [" << iou_predictor->weight.sizes() << "]" << std::endl; std::cout << " bias: [" << iou_predictor->bias.sizes() << "]" << std::endl; try { // The feat_prod_0 and feat_prod_1 are now directly the pooled_feat1 and pooled_feat2 // as modulation was applied before pooling. auto x0 = fc3_rt.forward(pooled_feat1); auto x1 = fc4_rt.forward(pooled_feat2); auto ioufeat_final = torch::cat({x0, x1}, 1).contiguous(); // Ensure iou_predictor is on the correct device iou_predictor->to(target_device); auto iou_scores = iou_predictor->forward(ioufeat_final); // Ensure iou_scores is on the correct device before returning iou_scores = iou_scores.to(target_device); // The following block for feat_prod_0 and feat_prod_1 is no longer needed as modulation is done pre-pool. /* auto mod0_4d = modulation[0].to(target_device); auto mod1_4d = modulation[1].to(target_device); if (mod0_4d.dim() == 2) { mod0_4d = mod0_4d.reshape({mod0_4d.size(0), mod0_4d.size(1), 1, 1}); } if (mod1_4d.dim() == 2) { mod1_4d = mod1_4d.reshape({mod1_4d.size(0), mod1_4d.size(1), 1, 1}); } if (mod0_4d.size(0) == 1 && pooled_feat1.size(0) > 1) { mod0_4d = mod0_4d.repeat({pooled_feat1.size(0), 1, 1, 1}); } if (mod1_4d.size(0) == 1 && pooled_feat2.size(0) > 1) { mod1_4d = mod1_4d.repeat({pooled_feat2.size(0), 1, 1, 1}); } std::cout << " Modulation vector shapes (reshaped 4D):" << std::endl; std::cout << " mod0_4d: [" << mod0_4d.sizes() << "] dev: " << mod0_4d.device() << std::endl; std::cout << " mod1_4d: [" << mod1_4d.sizes() << "] dev: " << mod1_4d.device() << std::endl; auto feat_prod_0 = pooled_feat1 * mod0_4d; auto feat_prod_1 = pooled_feat2 * mod1_4d; std::cout << " Feature product shapes (pooled_feat * mod_vec):" << std::endl; std::cout << " feat_prod_0: [" << feat_prod_0.sizes() << "] dev: " << feat_prod_0.device() << std::endl; std::cout << " feat_prod_1: [" << feat_prod_1.sizes() << "] dev: " << feat_prod_1.device() << std::endl; // Forward through linear blocks // Ensure fc3_rt and fc4_rt are on the correct device fc3_rt.to(target_device); fc4_rt.to(target_device); auto x0 = fc3_rt.forward(feat_prod_0); auto x1 = fc4_rt.forward(feat_prod_1); std::cout << " fc_rt output shapes:" << std::endl; std::cout << " x0 (fc3_rt output): [" << x0.sizes() << "] dev: " << x0.device() << std::endl; std::cout << " x1 (fc4_rt output): [" << x1.sizes() << "] dev: " << x1.device() << std::endl; auto ioufeat_final = torch::cat({x0, x1}, 1).contiguous(); std::cout << " ioufeat_final shape: [" << ioufeat_final.sizes() << "] dev: " << ioufeat_final.device() << std::endl; // Ensure iou_predictor is on the correct device iou_predictor->to(target_device); auto iou_scores = iou_predictor->forward(ioufeat_final); // Ensure iou_scores is on the correct device before returning iou_scores = iou_scores.to(target_device); */ // Ensure iou_scores is on the correct device before returning. // This was already done above, but as a final check: if (iou_scores.device() != target_device) { iou_scores = iou_scores.to(target_device); } iou_scores = iou_scores.reshape({batch_size, num_proposals}); std::cout << " Final iou_scores shape: [" << iou_scores.size(0) << ", " << iou_scores.size(1) << "]" << std::endl; return iou_scores; } catch (const std::exception& e) { std::cerr << "CRITICAL: Unexpected error in predict_iou: " << e.what() << std::endl; std::cout << " Propagating critical error. No fallback available for this stage." << std::endl; throw; } } // Print model information void BBRegressor::print_model_info() { std::cout << "BBRegressor Model Information:" << std::endl; std::cout << " - Model directory: " << model_dir << std::endl; std::cout << " - Device: CUDA:" << device.index() << std::endl; std::cout << " - CUDA Device Count: " << torch::cuda::device_count() << std::endl; std::cout << " - Using PreciseRoIPooling: " << #ifdef WITH_PRROI_POOLING "Yes" #else "No (will fail)" #endif << std::endl; } // Compute statistics for a tensor BBRegressor::TensorStats BBRegressor::compute_stats(const torch::Tensor& tensor) { TensorStats stats; // Get shape for (int i = 0; i < tensor.dim(); i++) { stats.shape.push_back(tensor.size(i)); } // Compute basic stats - make sure we reduce to scalar values stats.mean = tensor.mean().item(); // Mean of all elements stats.std_dev = tensor.std().item(); // Std dev of all elements stats.min_val = tensor.min().item(); // Min of all elements stats.max_val = tensor.max().item(); // Max of all elements stats.sum = tensor.sum().item(); // Sum of all elements // Sample values at specific positions if (tensor.dim() >= 4) { // For 4D tensors (batch, channel, height, width) stats.samples.push_back(tensor.index({0, 0, 0, 0}).item()); if (tensor.size(1) > 1 && tensor.size(2) > 1 && tensor.size(3) > 1) { int mid_c = static_cast(tensor.size(1) / 2); int mid_h = static_cast(tensor.size(2) / 2); int mid_w = static_cast(tensor.size(3) / 2); stats.samples.push_back(tensor.index({0, mid_c, mid_h, mid_w}).item()); // Use static_cast to convert int64_t to int to avoid type mismatch int64_t last_c_idx = tensor.size(1) - 1; int64_t last_h_idx = tensor.size(2) - 1; int64_t last_w_idx = tensor.size(3) - 1; // Limit indices to avoid accessing out of bounds if (last_c_idx > 10) last_c_idx = 10; if (last_h_idx > 10) last_h_idx = 10; if (last_w_idx > 10) last_w_idx = 10; stats.samples.push_back(tensor.index({0, static_cast(last_c_idx), static_cast(last_h_idx), static_cast(last_w_idx)}).item()); } } else if (tensor.dim() == 3) { // For 3D tensors stats.samples.push_back(tensor.index({0, 0, 0}).item()); if (tensor.size(1) > 1 && tensor.size(2) > 1) { int mid_h = static_cast(tensor.size(1) / 2); int mid_w = static_cast(tensor.size(2) / 2); stats.samples.push_back(tensor.index({0, mid_h, mid_w}).item()); int last_h = static_cast(tensor.size(1) - 1); int last_w = static_cast(tensor.size(2) - 1); stats.samples.push_back(tensor.index({0, last_h, last_w}).item()); } } else if (tensor.dim() == 2) { // For 2D tensors stats.samples.push_back(tensor.index({0, 0}).item()); if (tensor.size(0) > 1 && tensor.size(1) > 1) { int mid_h = static_cast(tensor.size(0) / 2); int mid_w = static_cast(tensor.size(1) / 2); stats.samples.push_back(tensor.index({mid_h, mid_w}).item()); int last_h = static_cast(tensor.size(0) - 1); int last_w = static_cast(tensor.size(1) - 1); stats.samples.push_back(tensor.index({last_h, last_w}).item()); } } else { // For 1D tensors or scalars if (tensor.numel() > 0) { stats.samples.push_back(tensor.index({0}).item()); if (tensor.size(0) > 1) { int mid = static_cast(tensor.size(0) / 2); stats.samples.push_back(tensor.index({mid}).item()); int last = static_cast(tensor.size(0) - 1); stats.samples.push_back(tensor.index({last}).item()); } } } return stats; } // Save tensor statistics to a file void BBRegressor::save_stats(const std::vector& all_stats, const std::string& filepath) { std::ofstream file(filepath); if (!file.is_open()) { std::cerr << "Error opening file for writing: " << filepath << std::endl; return; } for (size_t i = 0; i < all_stats.size(); i++) { const auto& stats = all_stats[i]; file << "Output " << i << ":" << std::endl; file << " Shape: ["; for (size_t j = 0; j < stats.shape.size(); j++) { file << stats.shape[j]; if (j < stats.shape.size() - 1) file << ", "; } file << "]" << std::endl; file << " Mean: " << stats.mean << std::endl; file << " Std: " << stats.std_dev << std::endl; file << " Min: " << stats.min_val << std::endl; file << " Max: " << stats.max_val << std::endl; file << " Sum: " << stats.sum << std::endl; file << " Sample values: ["; for (size_t j = 0; j < stats.samples.size(); j++) { file << stats.samples[j]; if (j < stats.samples.size() - 1) file << ", "; } file << "]" << std::endl << std::endl; } file.close(); }