diff --git a/test/test_models.cpp b/test/test_models.cpp index 9415cfc..28c69d5 100644 --- a/test/test_models.cpp +++ b/test/test_models.cpp @@ -275,6 +275,8 @@ int main(int argc, char* argv[]) { if (bb_regressor_model_opt_wrapped.has_value() && resnet_outputs.count("layer2") && resnet_outputs.count("layer3")) { try { std::cout << "Processing BBRegressor for sample " << i << std::endl; + // Remove debug_get_conv3_1t_output and debug_get_conv4_1t_output calls (they do not exist) + // The correct BBRegressor logic is: std::vector backbone_feats_for_bb = { resnet_outputs["layer2"].clone(), resnet_outputs["layer3"].clone() @@ -294,14 +296,6 @@ int main(int argc, char* argv[]) { } else { std::cerr << " Skipping BBRegressor predict_iou for sample " << i << " (iou_feats or mod_vectors empty)." << std::endl; } - - // Save debug intermediate outputs - torch::Tensor cpp_conv3_1t_out = (*bb_regressor_model_opt_wrapped).debug_get_conv3_1t_output(resnet_outputs["layer2"].clone()); - save_tensor_to_file(cpp_conv3_1t_out, (bb_reg_out_dir / (sample_suffix + "_debug_conv3_1t_output.pt")).string()); - - torch::Tensor cpp_conv4_1t_out = (*bb_regressor_model_opt_wrapped).debug_get_conv4_1t_output(resnet_outputs["layer3"].clone()); - save_tensor_to_file(cpp_conv4_1t_out, (bb_reg_out_dir / (sample_suffix + "_debug_conv4_1t_output.pt")).string()); - std::cout << "BBRegressor processing done for sample " << i << std::endl; } catch (const std::exception& e) { std::cerr << "Error during BBRegressor processing for sample " << i << ": " << e.what() << std::endl;