You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

44 lines
1.5 KiB

import torch
import torch.nn as nn
import torch.nn.functional as F
class DistanceMap(nn.Module):
"""Generate a distance map from a origin center location.
args:
num_bins: Number of bins in the map.
bin_displacement: Displacement of the bins.
"""
def __init__(self, num_bins, bin_displacement=1.0):
super().__init__()
self.num_bins = num_bins
self.bin_displacement = bin_displacement
torch.cuda.empty_cache()
def forward(self, center, output_sz):
"""Create the distance map.
args:
center: Torch tensor with (y,x) center position. Dims (batch, 2)
output_sz: Size of output distance map. 2-dimensional tuple."""
torch.cuda.empty_cache()
center = center.view(-1,2)
bin_centers = torch.arange(self.num_bins, dtype=torch.float32, device=center.device).view(1, -1, 1, 1)
k0 = torch.arange(output_sz[0], dtype=torch.float32, device=center.device).view(1,1,-1,1)
k1 = torch.arange(output_sz[1], dtype=torch.float32, device=center.device).view(1,1,1,-1)
d0 = k0 - center[:,0].view(-1,1,1,1)
d1 = k1 - center[:,1].view(-1,1,1,1)
dist = torch.sqrt(d0*d0 + d1*d1)
bin_diff = dist / self.bin_displacement - bin_centers
bin_val = torch.cat((F.relu(1.0 - torch.abs(bin_diff[:,:-1,:,:]), inplace=True),
(1.0 + bin_diff[:,-1:,:,:]).clamp(0, 1)), dim=1)
return bin_val