# BACKBONE Weights Documentation ## conv1.weight - Shape: torch.Size([64, 3, 7, 7]) - Type: torch.float32 - File: conv1_weight.pt ## bn1.weight - Shape: torch.Size([64]) - Type: torch.float32 - File: bn1_weight.pt ## bn1.bias - Shape: torch.Size([64]) - Type: torch.float32 - File: bn1_bias.pt ## bn1.running_mean - Shape: torch.Size([64]) - Type: torch.float32 - File: bn1_running_mean.pt ## bn1.running_var - Shape: torch.Size([64]) - Type: torch.float32 - File: bn1_running_var.pt ## bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: bn1_num_batches_tracked.pt ## layer1.0.conv1.weight - Shape: torch.Size([64, 64, 1, 1]) - Type: torch.float32 - File: layer1_0_conv1_weight.pt ## layer1.0.bn1.weight - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_0_bn1_weight.pt ## layer1.0.bn1.bias - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_0_bn1_bias.pt ## layer1.0.bn1.running_mean - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_0_bn1_running_mean.pt ## layer1.0.bn1.running_var - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_0_bn1_running_var.pt ## layer1.0.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer1_0_bn1_num_batches_tracked.pt ## layer1.0.conv2.weight - Shape: torch.Size([64, 64, 3, 3]) - Type: torch.float32 - File: layer1_0_conv2_weight.pt ## layer1.0.bn2.weight - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_0_bn2_weight.pt ## layer1.0.bn2.bias - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_0_bn2_bias.pt ## layer1.0.bn2.running_mean - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_0_bn2_running_mean.pt ## layer1.0.bn2.running_var - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_0_bn2_running_var.pt ## layer1.0.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer1_0_bn2_num_batches_tracked.pt ## layer1.0.conv3.weight - Shape: torch.Size([256, 64, 1, 1]) - Type: torch.float32 - File: layer1_0_conv3_weight.pt ## layer1.0.bn3.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_0_bn3_weight.pt ## layer1.0.bn3.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_0_bn3_bias.pt ## layer1.0.bn3.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_0_bn3_running_mean.pt ## layer1.0.bn3.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_0_bn3_running_var.pt ## layer1.0.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer1_0_bn3_num_batches_tracked.pt ## layer1.0.downsample.0.weight - Shape: torch.Size([256, 64, 1, 1]) - Type: torch.float32 - File: layer1_0_downsample_0_weight.pt ## layer1.0.downsample.1.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_0_downsample_1_weight.pt ## layer1.0.downsample.1.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_0_downsample_1_bias.pt ## layer1.0.downsample.1.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_0_downsample_1_running_mean.pt ## layer1.0.downsample.1.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_0_downsample_1_running_var.pt ## layer1.0.downsample.1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer1_0_downsample_1_num_batches_tracked.pt ## layer1.1.conv1.weight - Shape: torch.Size([64, 256, 1, 1]) - Type: torch.float32 - File: layer1_1_conv1_weight.pt ## layer1.1.bn1.weight - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_1_bn1_weight.pt ## layer1.1.bn1.bias - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_1_bn1_bias.pt ## layer1.1.bn1.running_mean - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_1_bn1_running_mean.pt ## layer1.1.bn1.running_var - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_1_bn1_running_var.pt ## layer1.1.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer1_1_bn1_num_batches_tracked.pt ## layer1.1.conv2.weight - Shape: torch.Size([64, 64, 3, 3]) - Type: torch.float32 - File: layer1_1_conv2_weight.pt ## layer1.1.bn2.weight - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_1_bn2_weight.pt ## layer1.1.bn2.bias - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_1_bn2_bias.pt ## layer1.1.bn2.running_mean - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_1_bn2_running_mean.pt ## layer1.1.bn2.running_var - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_1_bn2_running_var.pt ## layer1.1.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer1_1_bn2_num_batches_tracked.pt ## layer1.1.conv3.weight - Shape: torch.Size([256, 64, 1, 1]) - Type: torch.float32 - File: layer1_1_conv3_weight.pt ## layer1.1.bn3.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_1_bn3_weight.pt ## layer1.1.bn3.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_1_bn3_bias.pt ## layer1.1.bn3.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_1_bn3_running_mean.pt ## layer1.1.bn3.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_1_bn3_running_var.pt ## layer1.1.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer1_1_bn3_num_batches_tracked.pt ## layer1.2.conv1.weight - Shape: torch.Size([64, 256, 1, 1]) - Type: torch.float32 - File: layer1_2_conv1_weight.pt ## layer1.2.bn1.weight - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_2_bn1_weight.pt ## layer1.2.bn1.bias - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_2_bn1_bias.pt ## layer1.2.bn1.running_mean - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_2_bn1_running_mean.pt ## layer1.2.bn1.running_var - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_2_bn1_running_var.pt ## layer1.2.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer1_2_bn1_num_batches_tracked.pt ## layer1.2.conv2.weight - Shape: torch.Size([64, 64, 3, 3]) - Type: torch.float32 - File: layer1_2_conv2_weight.pt ## layer1.2.bn2.weight - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_2_bn2_weight.pt ## layer1.2.bn2.bias - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_2_bn2_bias.pt ## layer1.2.bn2.running_mean - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_2_bn2_running_mean.pt ## layer1.2.bn2.running_var - Shape: torch.Size([64]) - Type: torch.float32 - File: layer1_2_bn2_running_var.pt ## layer1.2.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer1_2_bn2_num_batches_tracked.pt ## layer1.2.conv3.weight - Shape: torch.Size([256, 64, 1, 1]) - Type: torch.float32 - File: layer1_2_conv3_weight.pt ## layer1.2.bn3.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_2_bn3_weight.pt ## layer1.2.bn3.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_2_bn3_bias.pt ## layer1.2.bn3.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_2_bn3_running_mean.pt ## layer1.2.bn3.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer1_2_bn3_running_var.pt ## layer1.2.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer1_2_bn3_num_batches_tracked.pt ## layer2.0.conv1.weight - Shape: torch.Size([128, 256, 1, 1]) - Type: torch.float32 - File: layer2_0_conv1_weight.pt ## layer2.0.bn1.weight - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_0_bn1_weight.pt ## layer2.0.bn1.bias - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_0_bn1_bias.pt ## layer2.0.bn1.running_mean - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_0_bn1_running_mean.pt ## layer2.0.bn1.running_var - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_0_bn1_running_var.pt ## layer2.0.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_0_bn1_num_batches_tracked.pt ## layer2.0.conv2.weight - Shape: torch.Size([128, 128, 3, 3]) - Type: torch.float32 - File: layer2_0_conv2_weight.pt ## layer2.0.bn2.weight - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_0_bn2_weight.pt ## layer2.0.bn2.bias - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_0_bn2_bias.pt ## layer2.0.bn2.running_mean - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_0_bn2_running_mean.pt ## layer2.0.bn2.running_var - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_0_bn2_running_var.pt ## layer2.0.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_0_bn2_num_batches_tracked.pt ## layer2.0.conv3.weight - Shape: torch.Size([512, 128, 1, 1]) - Type: torch.float32 - File: layer2_0_conv3_weight.pt ## layer2.0.bn3.weight - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_0_bn3_weight.pt ## layer2.0.bn3.bias - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_0_bn3_bias.pt ## layer2.0.bn3.running_mean - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_0_bn3_running_mean.pt ## layer2.0.bn3.running_var - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_0_bn3_running_var.pt ## layer2.0.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_0_bn3_num_batches_tracked.pt ## layer2.0.downsample.0.weight - Shape: torch.Size([512, 256, 1, 1]) - Type: torch.float32 - File: layer2_0_downsample_0_weight.pt ## layer2.0.downsample.1.weight - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_0_downsample_1_weight.pt ## layer2.0.downsample.1.bias - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_0_downsample_1_bias.pt ## layer2.0.downsample.1.running_mean - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_0_downsample_1_running_mean.pt ## layer2.0.downsample.1.running_var - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_0_downsample_1_running_var.pt ## layer2.0.downsample.1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_0_downsample_1_num_batches_tracked.pt ## layer2.1.conv1.weight - Shape: torch.Size([128, 512, 1, 1]) - Type: torch.float32 - File: layer2_1_conv1_weight.pt ## layer2.1.bn1.weight - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_1_bn1_weight.pt ## layer2.1.bn1.bias - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_1_bn1_bias.pt ## layer2.1.bn1.running_mean - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_1_bn1_running_mean.pt ## layer2.1.bn1.running_var - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_1_bn1_running_var.pt ## layer2.1.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_1_bn1_num_batches_tracked.pt ## layer2.1.conv2.weight - Shape: torch.Size([128, 128, 3, 3]) - Type: torch.float32 - File: layer2_1_conv2_weight.pt ## layer2.1.bn2.weight - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_1_bn2_weight.pt ## layer2.1.bn2.bias - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_1_bn2_bias.pt ## layer2.1.bn2.running_mean - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_1_bn2_running_mean.pt ## layer2.1.bn2.running_var - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_1_bn2_running_var.pt ## layer2.1.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_1_bn2_num_batches_tracked.pt ## layer2.1.conv3.weight - Shape: torch.Size([512, 128, 1, 1]) - Type: torch.float32 - File: layer2_1_conv3_weight.pt ## layer2.1.bn3.weight - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_1_bn3_weight.pt ## layer2.1.bn3.bias - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_1_bn3_bias.pt ## layer2.1.bn3.running_mean - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_1_bn3_running_mean.pt ## layer2.1.bn3.running_var - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_1_bn3_running_var.pt ## layer2.1.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_1_bn3_num_batches_tracked.pt ## layer2.2.conv1.weight - Shape: torch.Size([128, 512, 1, 1]) - Type: torch.float32 - File: layer2_2_conv1_weight.pt ## layer2.2.bn1.weight - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_2_bn1_weight.pt ## layer2.2.bn1.bias - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_2_bn1_bias.pt ## layer2.2.bn1.running_mean - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_2_bn1_running_mean.pt ## layer2.2.bn1.running_var - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_2_bn1_running_var.pt ## layer2.2.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_2_bn1_num_batches_tracked.pt ## layer2.2.conv2.weight - Shape: torch.Size([128, 128, 3, 3]) - Type: torch.float32 - File: layer2_2_conv2_weight.pt ## layer2.2.bn2.weight - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_2_bn2_weight.pt ## layer2.2.bn2.bias - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_2_bn2_bias.pt ## layer2.2.bn2.running_mean - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_2_bn2_running_mean.pt ## layer2.2.bn2.running_var - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_2_bn2_running_var.pt ## layer2.2.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_2_bn2_num_batches_tracked.pt ## layer2.2.conv3.weight - Shape: torch.Size([512, 128, 1, 1]) - Type: torch.float32 - File: layer2_2_conv3_weight.pt ## layer2.2.bn3.weight - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_2_bn3_weight.pt ## layer2.2.bn3.bias - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_2_bn3_bias.pt ## layer2.2.bn3.running_mean - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_2_bn3_running_mean.pt ## layer2.2.bn3.running_var - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_2_bn3_running_var.pt ## layer2.2.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_2_bn3_num_batches_tracked.pt ## layer2.3.conv1.weight - Shape: torch.Size([128, 512, 1, 1]) - Type: torch.float32 - File: layer2_3_conv1_weight.pt ## layer2.3.bn1.weight - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_3_bn1_weight.pt ## layer2.3.bn1.bias - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_3_bn1_bias.pt ## layer2.3.bn1.running_mean - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_3_bn1_running_mean.pt ## layer2.3.bn1.running_var - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_3_bn1_running_var.pt ## layer2.3.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_3_bn1_num_batches_tracked.pt ## layer2.3.conv2.weight - Shape: torch.Size([128, 128, 3, 3]) - Type: torch.float32 - File: layer2_3_conv2_weight.pt ## layer2.3.bn2.weight - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_3_bn2_weight.pt ## layer2.3.bn2.bias - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_3_bn2_bias.pt ## layer2.3.bn2.running_mean - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_3_bn2_running_mean.pt ## layer2.3.bn2.running_var - Shape: torch.Size([128]) - Type: torch.float32 - File: layer2_3_bn2_running_var.pt ## layer2.3.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_3_bn2_num_batches_tracked.pt ## layer2.3.conv3.weight - Shape: torch.Size([512, 128, 1, 1]) - Type: torch.float32 - File: layer2_3_conv3_weight.pt ## layer2.3.bn3.weight - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_3_bn3_weight.pt ## layer2.3.bn3.bias - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_3_bn3_bias.pt ## layer2.3.bn3.running_mean - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_3_bn3_running_mean.pt ## layer2.3.bn3.running_var - Shape: torch.Size([512]) - Type: torch.float32 - File: layer2_3_bn3_running_var.pt ## layer2.3.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer2_3_bn3_num_batches_tracked.pt ## layer3.0.conv1.weight - Shape: torch.Size([256, 512, 1, 1]) - Type: torch.float32 - File: layer3_0_conv1_weight.pt ## layer3.0.bn1.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_0_bn1_weight.pt ## layer3.0.bn1.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_0_bn1_bias.pt ## layer3.0.bn1.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_0_bn1_running_mean.pt ## layer3.0.bn1.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_0_bn1_running_var.pt ## layer3.0.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_0_bn1_num_batches_tracked.pt ## layer3.0.conv2.weight - Shape: torch.Size([256, 256, 3, 3]) - Type: torch.float32 - File: layer3_0_conv2_weight.pt ## layer3.0.bn2.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_0_bn2_weight.pt ## layer3.0.bn2.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_0_bn2_bias.pt ## layer3.0.bn2.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_0_bn2_running_mean.pt ## layer3.0.bn2.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_0_bn2_running_var.pt ## layer3.0.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_0_bn2_num_batches_tracked.pt ## layer3.0.conv3.weight - Shape: torch.Size([1024, 256, 1, 1]) - Type: torch.float32 - File: layer3_0_conv3_weight.pt ## layer3.0.bn3.weight - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_0_bn3_weight.pt ## layer3.0.bn3.bias - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_0_bn3_bias.pt ## layer3.0.bn3.running_mean - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_0_bn3_running_mean.pt ## layer3.0.bn3.running_var - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_0_bn3_running_var.pt ## layer3.0.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_0_bn3_num_batches_tracked.pt ## layer3.0.downsample.0.weight - Shape: torch.Size([1024, 512, 1, 1]) - Type: torch.float32 - File: layer3_0_downsample_0_weight.pt ## layer3.0.downsample.1.weight - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_0_downsample_1_weight.pt ## layer3.0.downsample.1.bias - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_0_downsample_1_bias.pt ## layer3.0.downsample.1.running_mean - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_0_downsample_1_running_mean.pt ## layer3.0.downsample.1.running_var - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_0_downsample_1_running_var.pt ## layer3.0.downsample.1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_0_downsample_1_num_batches_tracked.pt ## layer3.1.conv1.weight - Shape: torch.Size([256, 1024, 1, 1]) - Type: torch.float32 - File: layer3_1_conv1_weight.pt ## layer3.1.bn1.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_1_bn1_weight.pt ## layer3.1.bn1.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_1_bn1_bias.pt ## layer3.1.bn1.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_1_bn1_running_mean.pt ## layer3.1.bn1.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_1_bn1_running_var.pt ## layer3.1.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_1_bn1_num_batches_tracked.pt ## layer3.1.conv2.weight - Shape: torch.Size([256, 256, 3, 3]) - Type: torch.float32 - File: layer3_1_conv2_weight.pt ## layer3.1.bn2.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_1_bn2_weight.pt ## layer3.1.bn2.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_1_bn2_bias.pt ## layer3.1.bn2.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_1_bn2_running_mean.pt ## layer3.1.bn2.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_1_bn2_running_var.pt ## layer3.1.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_1_bn2_num_batches_tracked.pt ## layer3.1.conv3.weight - Shape: torch.Size([1024, 256, 1, 1]) - Type: torch.float32 - File: layer3_1_conv3_weight.pt ## layer3.1.bn3.weight - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_1_bn3_weight.pt ## layer3.1.bn3.bias - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_1_bn3_bias.pt ## layer3.1.bn3.running_mean - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_1_bn3_running_mean.pt ## layer3.1.bn3.running_var - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_1_bn3_running_var.pt ## layer3.1.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_1_bn3_num_batches_tracked.pt ## layer3.2.conv1.weight - Shape: torch.Size([256, 1024, 1, 1]) - Type: torch.float32 - File: layer3_2_conv1_weight.pt ## layer3.2.bn1.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_2_bn1_weight.pt ## layer3.2.bn1.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_2_bn1_bias.pt ## layer3.2.bn1.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_2_bn1_running_mean.pt ## layer3.2.bn1.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_2_bn1_running_var.pt ## layer3.2.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_2_bn1_num_batches_tracked.pt ## layer3.2.conv2.weight - Shape: torch.Size([256, 256, 3, 3]) - Type: torch.float32 - File: layer3_2_conv2_weight.pt ## layer3.2.bn2.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_2_bn2_weight.pt ## layer3.2.bn2.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_2_bn2_bias.pt ## layer3.2.bn2.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_2_bn2_running_mean.pt ## layer3.2.bn2.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_2_bn2_running_var.pt ## layer3.2.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_2_bn2_num_batches_tracked.pt ## layer3.2.conv3.weight - Shape: torch.Size([1024, 256, 1, 1]) - Type: torch.float32 - File: layer3_2_conv3_weight.pt ## layer3.2.bn3.weight - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_2_bn3_weight.pt ## layer3.2.bn3.bias - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_2_bn3_bias.pt ## layer3.2.bn3.running_mean - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_2_bn3_running_mean.pt ## layer3.2.bn3.running_var - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_2_bn3_running_var.pt ## layer3.2.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_2_bn3_num_batches_tracked.pt ## layer3.3.conv1.weight - Shape: torch.Size([256, 1024, 1, 1]) - Type: torch.float32 - File: layer3_3_conv1_weight.pt ## layer3.3.bn1.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_3_bn1_weight.pt ## layer3.3.bn1.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_3_bn1_bias.pt ## layer3.3.bn1.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_3_bn1_running_mean.pt ## layer3.3.bn1.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_3_bn1_running_var.pt ## layer3.3.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_3_bn1_num_batches_tracked.pt ## layer3.3.conv2.weight - Shape: torch.Size([256, 256, 3, 3]) - Type: torch.float32 - File: layer3_3_conv2_weight.pt ## layer3.3.bn2.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_3_bn2_weight.pt ## layer3.3.bn2.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_3_bn2_bias.pt ## layer3.3.bn2.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_3_bn2_running_mean.pt ## layer3.3.bn2.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_3_bn2_running_var.pt ## layer3.3.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_3_bn2_num_batches_tracked.pt ## layer3.3.conv3.weight - Shape: torch.Size([1024, 256, 1, 1]) - Type: torch.float32 - File: layer3_3_conv3_weight.pt ## layer3.3.bn3.weight - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_3_bn3_weight.pt ## layer3.3.bn3.bias - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_3_bn3_bias.pt ## layer3.3.bn3.running_mean - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_3_bn3_running_mean.pt ## layer3.3.bn3.running_var - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_3_bn3_running_var.pt ## layer3.3.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_3_bn3_num_batches_tracked.pt ## layer3.4.conv1.weight - Shape: torch.Size([256, 1024, 1, 1]) - Type: torch.float32 - File: layer3_4_conv1_weight.pt ## layer3.4.bn1.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_4_bn1_weight.pt ## layer3.4.bn1.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_4_bn1_bias.pt ## layer3.4.bn1.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_4_bn1_running_mean.pt ## layer3.4.bn1.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_4_bn1_running_var.pt ## layer3.4.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_4_bn1_num_batches_tracked.pt ## layer3.4.conv2.weight - Shape: torch.Size([256, 256, 3, 3]) - Type: torch.float32 - File: layer3_4_conv2_weight.pt ## layer3.4.bn2.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_4_bn2_weight.pt ## layer3.4.bn2.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_4_bn2_bias.pt ## layer3.4.bn2.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_4_bn2_running_mean.pt ## layer3.4.bn2.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_4_bn2_running_var.pt ## layer3.4.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_4_bn2_num_batches_tracked.pt ## layer3.4.conv3.weight - Shape: torch.Size([1024, 256, 1, 1]) - Type: torch.float32 - File: layer3_4_conv3_weight.pt ## layer3.4.bn3.weight - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_4_bn3_weight.pt ## layer3.4.bn3.bias - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_4_bn3_bias.pt ## layer3.4.bn3.running_mean - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_4_bn3_running_mean.pt ## layer3.4.bn3.running_var - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_4_bn3_running_var.pt ## layer3.4.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_4_bn3_num_batches_tracked.pt ## layer3.5.conv1.weight - Shape: torch.Size([256, 1024, 1, 1]) - Type: torch.float32 - File: layer3_5_conv1_weight.pt ## layer3.5.bn1.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_5_bn1_weight.pt ## layer3.5.bn1.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_5_bn1_bias.pt ## layer3.5.bn1.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_5_bn1_running_mean.pt ## layer3.5.bn1.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_5_bn1_running_var.pt ## layer3.5.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_5_bn1_num_batches_tracked.pt ## layer3.5.conv2.weight - Shape: torch.Size([256, 256, 3, 3]) - Type: torch.float32 - File: layer3_5_conv2_weight.pt ## layer3.5.bn2.weight - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_5_bn2_weight.pt ## layer3.5.bn2.bias - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_5_bn2_bias.pt ## layer3.5.bn2.running_mean - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_5_bn2_running_mean.pt ## layer3.5.bn2.running_var - Shape: torch.Size([256]) - Type: torch.float32 - File: layer3_5_bn2_running_var.pt ## layer3.5.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_5_bn2_num_batches_tracked.pt ## layer3.5.conv3.weight - Shape: torch.Size([1024, 256, 1, 1]) - Type: torch.float32 - File: layer3_5_conv3_weight.pt ## layer3.5.bn3.weight - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_5_bn3_weight.pt ## layer3.5.bn3.bias - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_5_bn3_bias.pt ## layer3.5.bn3.running_mean - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_5_bn3_running_mean.pt ## layer3.5.bn3.running_var - Shape: torch.Size([1024]) - Type: torch.float32 - File: layer3_5_bn3_running_var.pt ## layer3.5.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer3_5_bn3_num_batches_tracked.pt ## layer4.0.conv1.weight - Shape: torch.Size([512, 1024, 1, 1]) - Type: torch.float32 - File: layer4_0_conv1_weight.pt ## layer4.0.bn1.weight - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_0_bn1_weight.pt ## layer4.0.bn1.bias - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_0_bn1_bias.pt ## layer4.0.bn1.running_mean - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_0_bn1_running_mean.pt ## layer4.0.bn1.running_var - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_0_bn1_running_var.pt ## layer4.0.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer4_0_bn1_num_batches_tracked.pt ## layer4.0.conv2.weight - Shape: torch.Size([512, 512, 3, 3]) - Type: torch.float32 - File: layer4_0_conv2_weight.pt ## layer4.0.bn2.weight - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_0_bn2_weight.pt ## layer4.0.bn2.bias - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_0_bn2_bias.pt ## layer4.0.bn2.running_mean - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_0_bn2_running_mean.pt ## layer4.0.bn2.running_var - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_0_bn2_running_var.pt ## layer4.0.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer4_0_bn2_num_batches_tracked.pt ## layer4.0.conv3.weight - Shape: torch.Size([2048, 512, 1, 1]) - Type: torch.float32 - File: layer4_0_conv3_weight.pt ## layer4.0.bn3.weight - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_0_bn3_weight.pt ## layer4.0.bn3.bias - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_0_bn3_bias.pt ## layer4.0.bn3.running_mean - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_0_bn3_running_mean.pt ## layer4.0.bn3.running_var - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_0_bn3_running_var.pt ## layer4.0.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer4_0_bn3_num_batches_tracked.pt ## layer4.0.downsample.0.weight - Shape: torch.Size([2048, 1024, 1, 1]) - Type: torch.float32 - File: layer4_0_downsample_0_weight.pt ## layer4.0.downsample.1.weight - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_0_downsample_1_weight.pt ## layer4.0.downsample.1.bias - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_0_downsample_1_bias.pt ## layer4.0.downsample.1.running_mean - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_0_downsample_1_running_mean.pt ## layer4.0.downsample.1.running_var - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_0_downsample_1_running_var.pt ## layer4.0.downsample.1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer4_0_downsample_1_num_batches_tracked.pt ## layer4.1.conv1.weight - Shape: torch.Size([512, 2048, 1, 1]) - Type: torch.float32 - File: layer4_1_conv1_weight.pt ## layer4.1.bn1.weight - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_1_bn1_weight.pt ## layer4.1.bn1.bias - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_1_bn1_bias.pt ## layer4.1.bn1.running_mean - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_1_bn1_running_mean.pt ## layer4.1.bn1.running_var - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_1_bn1_running_var.pt ## layer4.1.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer4_1_bn1_num_batches_tracked.pt ## layer4.1.conv2.weight - Shape: torch.Size([512, 512, 3, 3]) - Type: torch.float32 - File: layer4_1_conv2_weight.pt ## layer4.1.bn2.weight - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_1_bn2_weight.pt ## layer4.1.bn2.bias - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_1_bn2_bias.pt ## layer4.1.bn2.running_mean - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_1_bn2_running_mean.pt ## layer4.1.bn2.running_var - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_1_bn2_running_var.pt ## layer4.1.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer4_1_bn2_num_batches_tracked.pt ## layer4.1.conv3.weight - Shape: torch.Size([2048, 512, 1, 1]) - Type: torch.float32 - File: layer4_1_conv3_weight.pt ## layer4.1.bn3.weight - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_1_bn3_weight.pt ## layer4.1.bn3.bias - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_1_bn3_bias.pt ## layer4.1.bn3.running_mean - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_1_bn3_running_mean.pt ## layer4.1.bn3.running_var - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_1_bn3_running_var.pt ## layer4.1.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer4_1_bn3_num_batches_tracked.pt ## layer4.2.conv1.weight - Shape: torch.Size([512, 2048, 1, 1]) - Type: torch.float32 - File: layer4_2_conv1_weight.pt ## layer4.2.bn1.weight - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_2_bn1_weight.pt ## layer4.2.bn1.bias - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_2_bn1_bias.pt ## layer4.2.bn1.running_mean - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_2_bn1_running_mean.pt ## layer4.2.bn1.running_var - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_2_bn1_running_var.pt ## layer4.2.bn1.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer4_2_bn1_num_batches_tracked.pt ## layer4.2.conv2.weight - Shape: torch.Size([512, 512, 3, 3]) - Type: torch.float32 - File: layer4_2_conv2_weight.pt ## layer4.2.bn2.weight - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_2_bn2_weight.pt ## layer4.2.bn2.bias - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_2_bn2_bias.pt ## layer4.2.bn2.running_mean - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_2_bn2_running_mean.pt ## layer4.2.bn2.running_var - Shape: torch.Size([512]) - Type: torch.float32 - File: layer4_2_bn2_running_var.pt ## layer4.2.bn2.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer4_2_bn2_num_batches_tracked.pt ## layer4.2.conv3.weight - Shape: torch.Size([2048, 512, 1, 1]) - Type: torch.float32 - File: layer4_2_conv3_weight.pt ## layer4.2.bn3.weight - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_2_bn3_weight.pt ## layer4.2.bn3.bias - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_2_bn3_bias.pt ## layer4.2.bn3.running_mean - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_2_bn3_running_mean.pt ## layer4.2.bn3.running_var - Shape: torch.Size([2048]) - Type: torch.float32 - File: layer4_2_bn3_running_var.pt ## layer4.2.bn3.num_batches_tracked - Shape: torch.Size([]) - Type: torch.int64 - File: layer4_2_bn3_num_batches_tracked.pt ## fc.weight - Shape: torch.Size([1000, 2048]) - Type: torch.float32 - File: fc_weight.pt ## fc.bias - Shape: torch.Size([1000]) - Type: torch.float32 - File: fc_bias.pt