#include "bb_regressor.h" #include #include #include #include #include #include // Add CUDA includes and external function declarations only if not in CPU_ONLY mode #ifndef CPU_ONLY // Add CUDA includes #include #include // Use the new PrRoIPooling implementation #include "prroi_pooling_gpu.h" #include "prroi_pooling_gpu_impl.cuh" #endif // PrRoIPool2D implementation with CPU fallback PrRoIPool2D::PrRoIPool2D(int pooled_height, int pooled_width, float spatial_scale) : pooled_height_(pooled_height), pooled_width_(pooled_width), spatial_scale_(spatial_scale) {} torch::Tensor PrRoIPool2D::forward(torch::Tensor feat, torch::Tensor rois) { // Print shape info for debugging std::cout << " PrRoIPool2D inputs: " << std::endl; std::cout << " Features: [" << feat.size(0) << ", " << feat.size(1) << ", " << feat.size(2) << ", " << feat.size(3) << "]" << std::endl; std::cout << " ROIs: [" << rois.size(0) << ", " << rois.size(1) << "]" << std::endl; std::cout << " Pooled size: [" << pooled_height_ << ", " << pooled_width_ << "]" << std::endl; std::cout << " Spatial scale: " << spatial_scale_ << std::endl; // Calculate output shape int channels = feat.size(1); int num_rois = rois.size(0); // Create output tensor auto output = torch::zeros({num_rois, channels, pooled_height_, pooled_width_}, feat.options()); // Use a simple average pooling as fallback for (int n = 0; n < num_rois; n++) { // Get ROI coordinates (batch_idx, x1, y1, x2, y2) int roi_batch_idx = static_cast(rois[n][0].item()); float roi_x1 = rois[n][1].item() * spatial_scale_; float roi_y1 = rois[n][2].item() * spatial_scale_; float roi_x2 = rois[n][3].item() * spatial_scale_; float roi_y2 = rois[n][4].item() * spatial_scale_; // Skip invalid ROIs if (roi_batch_idx < 0) continue; // Force ROI bounds within image int img_height = feat.size(2); int img_width = feat.size(3); roi_x1 = std::max(0.0f, std::min(static_cast(img_width - 1), roi_x1)); roi_y1 = std::max(0.0f, std::min(static_cast(img_height - 1), roi_y1)); roi_x2 = std::max(0.0f, std::min(static_cast(img_width - 1), roi_x2)); roi_y2 = std::max(0.0f, std::min(static_cast(img_height - 1), roi_y2)); // Convert to integers for pooling int x1 = static_cast(roi_x1); int y1 = static_cast(roi_y1); int x2 = static_cast(ceil(roi_x2)); int y2 = static_cast(ceil(roi_y2)); // Calculate bin sizes float bin_width = (roi_x2 - roi_x1) / pooled_width_; float bin_height = (roi_y2 - roi_y1) / pooled_height_; // Perform pooling for each output location for (int ph = 0; ph < pooled_height_; ph++) { for (int pw = 0; pw < pooled_width_; pw++) { // Compute bin boundaries int hstart = static_cast(roi_y1 + ph * bin_height); int wstart = static_cast(roi_x1 + pw * bin_width); int hend = static_cast(ceil(roi_y1 + (ph + 1) * bin_height)); int wend = static_cast(ceil(roi_x1 + (pw + 1) * bin_width)); // Clip to image boundaries hstart = std::max(0, std::min(img_height - 1, hstart)); wstart = std::max(0, std::min(img_width - 1, wstart)); hend = std::max(0, std::min(img_height, hend)); wend = std::max(0, std::min(img_width, wend)); // Skip empty bins if (hend <= hstart || wend <= wstart) continue; // Calculate pool size int pool_size = (hend - hstart) * (wend - wstart); // For each channel, perform pooling for (int c = 0; c < channels; c++) { float sum = 0.0f; // Sum over the bin area for (int h = hstart; h < hend; h++) { for (int w = wstart; w < wend; w++) { sum += feat[roi_batch_idx][c][h][w].item(); } } // Average pooling if (pool_size > 0) { output[n][c][ph][pw] = sum / pool_size; } } } } } return output; } // LinearBlock implementation LinearBlock::LinearBlock(int in_planes, int out_planes, int input_sz, bool bias, bool batch_norm, bool relu) { // Create the linear layer with proper input dimensions auto linear_options = torch::nn::LinearOptions(in_planes * input_sz * input_sz, out_planes).bias(bias); linear = register_module("linear", torch::nn::Linear(linear_options)); use_bn = batch_norm; if (use_bn) { // Important: use BatchNorm2d to match Python implementation bn = register_module("bn", torch::nn::BatchNorm2d(torch::nn::BatchNorm2dOptions(out_planes))); } use_relu = relu; if (use_relu) { relu_ = register_module("relu", torch::nn::ReLU(torch::nn::ReLUOptions().inplace(true))); } } torch::Tensor LinearBlock::forward(torch::Tensor x) { // Store original dtype for later auto original_dtype = x.dtype(); // Use double precision for higher accuracy auto x_double = x.to(torch::kFloat64); // Reshape exactly as in Python: x.reshape(x.shape[0], -1) x_double = x_double.reshape({x_double.size(0), -1}).contiguous(); // Convert back to original precision for the linear operation auto x_float = x_double.to(original_dtype); x_float = linear->forward(x_float); // Back to double precision for further operations x_double = x_float.to(torch::kFloat64); if (use_bn) { // This is crucial: reshape to 4D tensor for BatchNorm2d exactly as in Python // In Python: x = self.bn(x.reshape(x.shape[0], x.shape[1], 1, 1)) x_double = x_double.reshape({x_double.size(0), x_double.size(1), 1, 1}).contiguous(); // Apply batch norm (convert to float32 for the operation) x_float = x_double.to(original_dtype); x_float = bn->forward(x_float); x_double = x_float.to(torch::kFloat64); } // Apply ReLU if needed if (use_relu) { // Apply ReLU in float32 precision x_float = x_double.to(original_dtype); x_float = relu_->forward(x_float); x_double = x_float.to(torch::kFloat64); } // Final reshape to 2D tensor, exactly matching Python's behavior x_double = x_double.reshape({x_double.size(0), -1}).contiguous(); // Return tensor in original precision return x_double.to(original_dtype); } // Create convolutional block torch::nn::Sequential BBRegressor::create_conv_block(int in_planes, int out_planes, int kernel_size, int stride, int padding, int dilation) { // Print dimensions for debugging std::cout << "Creating conv block: in_planes=" << in_planes << ", out_planes=" << out_planes << std::endl; torch::nn::Sequential seq; // Add convolutional layer seq->push_back(torch::nn::Conv2d(torch::nn::Conv2dOptions(in_planes, out_planes, kernel_size) .stride(stride).padding(padding).dilation(dilation).bias(true))); // Add batch normalization layer seq->push_back(torch::nn::BatchNorm2d(torch::nn::BatchNorm2dOptions(out_planes))); // Add ReLU activation seq->push_back(torch::nn::ReLU(torch::nn::ReLUOptions().inplace(true))); return seq; } // Helper function to verify BatchNorm dimensions void BBRegressor::verify_batchnorm_dimensions() { std::cout << "Verifying BatchNorm dimensions..." << std::endl; // Get children of conv3_1r std::cout << "conv3_1r has " << conv3_1r->size() << " modules" << std::endl; if (conv3_1r->size() > 1) { auto module = conv3_1r[1]; std::cout << "conv3_1r module[1] type: " << module->name() << std::endl; } // Get children of conv3_1t std::cout << "conv3_1t has " << conv3_1t->size() << " modules" << std::endl; if (conv3_1t->size() > 1) { auto module = conv3_1t[1]; std::cout << "conv3_1t module[1] type: " << module->name() << std::endl; } // Get children of conv3_2t std::cout << "conv3_2t has " << conv3_2t->size() << " modules" << std::endl; if (conv3_2t->size() > 1) { auto module = conv3_2t[1]; std::cout << "conv3_2t module[1] type: " << module->name() << std::endl; } } // Helper function to read file to bytes std::vector BBRegressor::read_file_to_bytes(const std::string& file_path) { std::ifstream file(file_path, std::ios::binary | std::ios::ate); if (!file.is_open()) { throw std::runtime_error("Could not open file: " + file_path); } std::streamsize size = file.tellg(); file.seekg(0, std::ios::beg); std::vector buffer(size); if (!file.read(buffer.data(), size)) { throw std::runtime_error("Could not read file: " + file_path); } return buffer; } // Load tensor from file torch::Tensor BBRegressor::load_tensor(const std::string& file_path) { try { // Read file into bytes first std::vector data = read_file_to_bytes(file_path); // Use pickle_load with byte data torch::Tensor tensor = torch::pickle_load(data).toTensor(); // Always move tensor to the specified device if (tensor.device() != device) { tensor = tensor.to(device); } return tensor; } catch (const std::exception& e) { std::cerr << "Error loading tensor from " << file_path << ": " << e.what() << std::endl; throw; } } // Constructor BBRegressor::BBRegressor(const std::string& base_dir, torch::Device dev) : device(dev), model_dir(base_dir + "/exported_weights/bb_regressor"), fc3_rt(256, 256, 5, true, true, true), fc4_rt(256, 256, 3, true, true, true) { // Check if base directory exists if (!fs::exists(base_dir)) { throw std::runtime_error("Base directory does not exist: " + base_dir); } // Check if model directory exists if (!fs::exists(model_dir)) { throw std::runtime_error("Model directory does not exist: " + model_dir); } // Initialize convolution blocks - match Python's AtomIoUNet implementation exactly std::cout << "Initializing conv blocks..." << std::endl; // In Python: self.conv3_1r = conv(input_dim[0], 128, kernel_size=3, stride=1) conv3_1r = create_conv_block(512, 128, 3, 1, 1, 1); // In Python: self.conv3_1t = conv(input_dim[0], 256, kernel_size=3, stride=1) conv3_1t = create_conv_block(512, 256, 3, 1, 1, 1); // In Python: self.conv3_2t = conv(256, pred_input_dim[0], kernel_size=3, stride=1) conv3_2t = create_conv_block(256, 256, 3, 1, 1, 1); // Update pooling sizes to match the Python model exactly // In Python: self.prroi_pool3r = PrRoIPool2D(3, 3, 1/8) prroi_pool3r = std::make_shared(3, 3, 0.125); // 1/8 scale for layer2 // In Python: self.prroi_pool3t = PrRoIPool2D(5, 5, 1/8) prroi_pool3t = std::make_shared(5, 5, 0.125); // 1/8 scale for layer2 // Create sequential blocks // In Python: self.fc3_1r = conv(128, 256, kernel_size=3, stride=1, padding=0) fc3_1r = create_conv_block(128, 256, 3, 1, 0, 1); // padding=0 for this layer // In Python: self.conv4_1r = conv(input_dim[1], 256, kernel_size=3, stride=1) conv4_1r = create_conv_block(1024, 256, 3, 1, 1, 1); // In Python: self.conv4_1t = conv(input_dim[1], 256, kernel_size=3, stride=1) conv4_1t = create_conv_block(1024, 256, 3, 1, 1, 1); // In Python: self.conv4_2t = conv(256, pred_input_dim[1], kernel_size=3, stride=1) conv4_2t = create_conv_block(256, 256, 3, 1, 1, 1); // In Python: self.prroi_pool4r = PrRoIPool2D(1, 1, 1/16) prroi_pool4r = std::make_shared(1, 1, 0.0625); // 1/16 scale for layer3 // In Python: self.prroi_pool4t = PrRoIPool2D(3, 3, 1/16) prroi_pool4t = std::make_shared(3, 3, 0.0625); // 1/16 scale for layer3 // In Python: self.fc34_3r = conv(256 + 256, pred_input_dim[0], kernel_size=1, stride=1, padding=0) fc34_3r = create_conv_block(512, 256, 1, 1, 0, 1); // kernel_size=1, padding=0 // In Python: self.fc34_4r = conv(256 + 256, pred_input_dim[1], kernel_size=1, stride=1, padding=0) fc34_4r = create_conv_block(512, 256, 1, 1, 0, 1); // kernel_size=1, padding=0 // Linear blocks - exactly match Python's implementation dimensions and parameters // In Python: self.fc3_rt = LinearBlock(pred_input_dim[0], pred_inter_dim[0], 5) fc3_rt = LinearBlock(256, 256, 5, true, true, true); // In Python: self.fc4_rt = LinearBlock(pred_input_dim[1], pred_inter_dim[1], 3) fc4_rt = LinearBlock(256, 256, 3, true, true, true); // In Python: self.iou_predictor = nn.Linear(pred_inter_dim[0]+pred_inter_dim[1], 1, bias=True) iou_predictor = torch::nn::Linear(torch::nn::LinearOptions(256 + 256, 1).bias(true)); // Load all weights load_weights(); // Set the model to evaluation mode this->eval(); // Debug information std::cout << "BB Regressor initialized in evaluation mode" << std::endl; } // Set the model to evaluation mode void BBRegressor::eval() { // Set all sequential modules to eval mode conv3_1r->eval(); conv3_1t->eval(); conv3_2t->eval(); fc3_1r->eval(); conv4_1r->eval(); conv4_1t->eval(); conv4_2t->eval(); fc34_3r->eval(); fc34_4r->eval(); // Linear blocks also need to be set to eval mode for BatchNorm layers fc3_rt.eval(); fc4_rt.eval(); // Set linear layers to eval mode (though this usually doesn't have any effect) iou_predictor->eval(); } // Load weights void BBRegressor::load_weights() { // Helper lambda to load weights for a sequential module auto load_sequential_weights = [this](torch::nn::Sequential& seq, const std::string& prefix) { try { // Load weights for conv layer (index 0) std::string weight_path = model_dir + "/" + prefix + "_0_weight.pt"; std::string bias_path = model_dir + "/" + prefix + "_0_bias.pt"; if (fs::exists(weight_path) && fs::exists(bias_path)) { auto conv_weight = load_tensor(weight_path); auto conv_bias = load_tensor(bias_path); // Get the conv2d module from sequential // Fix: Get the number of output channels from the weight tensor int out_channels = conv_weight.size(0); int in_channels = conv_weight.size(1); int kernel_size = conv_weight.size(2); std::cout << "Loading " << prefix << " conv weights: " << "[out_ch=" << out_channels << ", in_ch=" << in_channels << ", kernel=" << kernel_size << "]" << std::endl; // FIXED: Use the correct padding based on the layer name int padding = 1; // Default padding // Special cases for layers with different padding if (prefix == "fc3_1r" || prefix == "fc34_3r" || prefix == "fc34_4r") { padding = 0; // These layers use padding=0 in the Python implementation } std::cout << " Using padding=" << padding << " for " << prefix << std::endl; auto conv_options = torch::nn::Conv2dOptions(in_channels, out_channels, kernel_size) .stride(1).padding(padding).bias(true); auto conv_module = torch::nn::Conv2d(conv_options); // Set weights and bias conv_module->weight = conv_weight; conv_module->bias = conv_bias; // Debug info - print some weight stats std::cout << " Conv weight stats: mean=" << conv_weight.mean().item() << ", std=" << conv_weight.std().item() << ", min=" << conv_weight.min().item() << ", max=" << conv_weight.max().item() << std::endl; // Create a new sequence with the proper conv module auto new_seq = torch::nn::Sequential(); new_seq->push_back(conv_module); // Load batch norm parameters (index 1) std::string bn_weight_path = model_dir + "/" + prefix + "_1_weight.pt"; std::string bn_bias_path = model_dir + "/" + prefix + "_1_bias.pt"; std::string bn_mean_path = model_dir + "/" + prefix + "_1_running_mean.pt"; std::string bn_var_path = model_dir + "/" + prefix + "_1_running_var.pt"; if (fs::exists(bn_weight_path) && fs::exists(bn_bias_path) && fs::exists(bn_mean_path) && fs::exists(bn_var_path)) { auto bn_weight = load_tensor(bn_weight_path); auto bn_bias = load_tensor(bn_bias_path); auto bn_mean = load_tensor(bn_mean_path); auto bn_var = load_tensor(bn_var_path); // Important: Create BatchNorm with the correct number of features from the weights int num_features = bn_weight.size(0); std::cout << " Creating BatchNorm2d with num_features=" << num_features << std::endl; // Create a proper batch norm module with the right number of features auto bn_options = torch::nn::BatchNorm2dOptions(num_features) .eps(1e-5) // Match Python default .momentum(0.1) // Match Python default .affine(true) .track_running_stats(true); auto bn_module = torch::nn::BatchNorm2d(bn_options); // Set batch norm parameters bn_module->weight = bn_weight; bn_module->bias = bn_bias; bn_module->running_mean = bn_mean; bn_module->running_var = bn_var; // Debug info - print some batch norm stats std::cout << " BN weight stats: mean=" << bn_weight.mean().item() << ", std=" << bn_weight.std().item() << std::endl; std::cout << " BN running_mean stats: mean=" << bn_mean.mean().item() << ", std=" << bn_mean.std().item() << std::endl; std::cout << " BN running_var stats: mean=" << bn_var.mean().item() << ", std=" << bn_var.std().item() << std::endl; // Add the batch norm module to the sequence new_seq->push_back(bn_module); } // Add the ReLU module with inplace=true to match Python auto relu_options = torch::nn::ReLUOptions().inplace(true); new_seq->push_back(torch::nn::ReLU(relu_options)); // Replace the old sequence with the new one seq = new_seq; std::cout << "Loaded weights for " << prefix << std::endl; } else { std::cerr << "Weight files not found for " << prefix << std::endl; } } catch (const std::exception& e) { std::cerr << "Error loading weights for " << prefix << ": " << e.what() << std::endl; throw; // Re-throw to stop execution } }; // Load weights for linear blocks auto load_linear_block_weights = [this](LinearBlock& block, const std::string& prefix) { try { // Load weights for linear layer std::string weight_path = model_dir + "/" + prefix + "_linear_weight.pt"; std::string bias_path = model_dir + "/" + prefix + "_linear_bias.pt"; if (fs::exists(weight_path) && fs::exists(bias_path)) { auto linear_weight = load_tensor(weight_path); auto linear_bias = load_tensor(bias_path); // Set weights and bias block.linear->weight = linear_weight; block.linear->bias = linear_bias; // Load batch norm parameters std::string bn_weight_path = model_dir + "/" + prefix + "_bn_weight.pt"; std::string bn_bias_path = model_dir + "/" + prefix + "_bn_bias.pt"; std::string bn_mean_path = model_dir + "/" + prefix + "_bn_running_mean.pt"; std::string bn_var_path = model_dir + "/" + prefix + "_bn_running_var.pt"; if (fs::exists(bn_weight_path) && fs::exists(bn_bias_path) && fs::exists(bn_mean_path) && fs::exists(bn_var_path)) { auto bn_weight = load_tensor(bn_weight_path); auto bn_bias = load_tensor(bn_bias_path); auto bn_mean = load_tensor(bn_mean_path); auto bn_var = load_tensor(bn_var_path); // Set batch norm parameters block.bn->weight = bn_weight; block.bn->bias = bn_bias; block.bn->running_mean = bn_mean; block.bn->running_var = bn_var; } std::cout << "Loaded weights for " << prefix << std::endl; } else { std::cerr << "Weight files not found for " << prefix << std::endl; } } catch (const std::exception& e) { std::cerr << "Error loading weights for " << prefix << ": " << e.what() << std::endl; throw; // Re-throw to stop execution } }; // Load weights for all layers load_sequential_weights(conv3_1r, "conv3_1r"); load_sequential_weights(conv3_1t, "conv3_1t"); load_sequential_weights(conv3_2t, "conv3_2t"); load_sequential_weights(fc3_1r, "fc3_1r"); load_sequential_weights(conv4_1r, "conv4_1r"); load_sequential_weights(conv4_1t, "conv4_1t"); load_sequential_weights(conv4_2t, "conv4_2t"); load_sequential_weights(fc34_3r, "fc34_3r"); load_sequential_weights(fc34_4r, "fc34_4r"); load_linear_block_weights(fc3_rt, "fc3_rt"); load_linear_block_weights(fc4_rt, "fc4_rt"); // Load IoU predictor weights try { std::string weight_path = model_dir + "/iou_predictor_weight.pt"; std::string bias_path = model_dir + "/iou_predictor_bias.pt"; if (fs::exists(weight_path) && fs::exists(bias_path)) { auto weight = load_tensor(weight_path); auto bias = load_tensor(bias_path); iou_predictor->weight = weight; iou_predictor->bias = bias; std::cout << "Loaded weights for iou_predictor" << std::endl; } else { std::cerr << "Weight files not found for iou_predictor" << std::endl; } } catch (const std::exception& e) { std::cerr << "Error loading weights for iou_predictor: " << e.what() << std::endl; throw; // Re-throw to stop execution } } // Move model to device void BBRegressor::to(torch::Device device) { // Verify the device is a CUDA device if (!device.is_cuda()) { throw std::runtime_error("BBRegressor requires a CUDA device"); } this->device = device; // Move all components to device conv3_1r->to(device); conv3_1t->to(device); conv3_2t->to(device); fc3_1r->to(device); conv4_1r->to(device); conv4_1t->to(device); conv4_2t->to(device); fc3_rt.to(device); fc4_rt.to(device); iou_predictor->to(device); } // Get IoU features from backbone features std::vector BBRegressor::get_iou_feat(std::vector feat2) { // Convert to double precision for better numerical stability auto feat2_double0 = feat2[0].to(torch::kFloat64); auto feat2_double1 = feat2[1].to(torch::kFloat64); // Reshape exactly as in Python implementation // In Python: feat2 = [f.reshape(-1, *f.shape[-3:]) if f.dim()==5 else f for f in feat2] if (feat2_double0.dim() == 5) { auto shape = feat2_double0.sizes(); feat2_double0 = feat2_double0.reshape({-1, shape[2], shape[3], shape[4]}).contiguous(); } if (feat2_double1.dim() == 5) { auto shape = feat2_double1.sizes(); feat2_double1 = feat2_double1.reshape({-1, shape[2], shape[3], shape[4]}).contiguous(); } // Convert back to float32 for convolution operations feat2[0] = feat2_double0.to(torch::kFloat32).contiguous(); feat2[1] = feat2_double1.to(torch::kFloat32).contiguous(); // Apply convolutions exactly as in Python torch::Tensor feat3_t = feat2[0]; torch::Tensor feat4_t = feat2[1]; // Ensure we're in evaluation mode torch::NoGradGuard no_grad; // Apply convolutions just like Python version torch::Tensor c3_t_1 = conv3_1t->forward(feat3_t); c3_t_1 = c3_t_1.contiguous(); torch::Tensor c3_t = conv3_2t->forward(c3_t_1); c3_t = c3_t.contiguous(); torch::Tensor c4_t_1 = conv4_1t->forward(feat4_t); c4_t_1 = c4_t_1.contiguous(); torch::Tensor c4_t = conv4_2t->forward(c4_t_1); c4_t = c4_t.contiguous(); // Return results return {c3_t, c4_t}; } // Get modulation vectors for the target std::vector BBRegressor::get_modulation(std::vector feat, torch::Tensor bb) { // Convert to double precision for better numerical stability auto feat0_double = feat[0].to(torch::kFloat64); auto feat1_double = feat[1].to(torch::kFloat64); auto bb_double = bb.to(torch::kFloat64); // Handle 5D tensors exactly like Python implementation if (feat0_double.dim() == 5) { auto shape = feat0_double.sizes(); feat0_double = feat0_double.reshape({-1, shape[2], shape[3], shape[4]}).contiguous(); } if (feat1_double.dim() == 5) { auto shape = feat1_double.sizes(); feat1_double = feat1_double.reshape({-1, shape[2], shape[3], shape[4]}).contiguous(); } // Convert back to float32 for convolution operations feat[0] = feat0_double.to(torch::kFloat32).contiguous(); feat[1] = feat1_double.to(torch::kFloat32).contiguous(); bb = bb_double.to(torch::kFloat32).contiguous(); torch::Tensor feat3_r = feat[0]; torch::Tensor feat4_r = feat[1]; // Disable gradients for evaluation torch::NoGradGuard no_grad; // Apply convolutions torch::Tensor c3_r = conv3_1r->forward(feat3_r); c3_r = c3_r.contiguous(); // Convert bb from xywh to x0y0x1y1 format with high precision auto bb_clone = bb.clone(); bb_double = bb_clone.to(torch::kFloat64); auto xy = bb_double.index({torch::indexing::Slice(), torch::indexing::Slice(0, 2)}); auto wh = bb_double.index({torch::indexing::Slice(), torch::indexing::Slice(2, 4)}); bb_double.index_put_({torch::indexing::Slice(), torch::indexing::Slice(2, 4)}, xy + wh); bb_clone = bb_double.to(torch::kFloat32); // Add batch_index to rois - match Python implementation exactly int batch_size = bb.size(0); auto batch_index = torch::arange(batch_size, torch::kFloat32).reshape({-1, 1}).to(bb.device()); auto roi1 = torch::cat({batch_index, bb_clone}, /*dim=*/1).contiguous(); // Apply RoI pooling torch::Tensor roi3r = prroi_pool3r->forward(c3_r, roi1); roi3r = roi3r.contiguous(); torch::Tensor c4_r = conv4_1r->forward(feat4_r); c4_r = c4_r.contiguous(); torch::Tensor roi4r = prroi_pool4r->forward(c4_r, roi1); roi4r = roi4r.contiguous(); torch::Tensor fc3_r = fc3_1r->forward(roi3r); fc3_r = fc3_r.contiguous(); // Concatenate with higher precision auto fc3_r_double = fc3_r.to(torch::kFloat64); auto roi4r_double = roi4r.to(torch::kFloat64); auto fc34_r_double = torch::cat({fc3_r_double, roi4r_double}, /*dim=*/1); auto fc34_r = fc34_r_double.to(torch::kFloat32).contiguous(); // Apply final convolutions torch::Tensor fc34_3_r = fc34_3r->forward(fc34_r); fc34_3_r = fc34_3_r.contiguous(); torch::Tensor fc34_4_r = fc34_4r->forward(fc34_r); fc34_4_r = fc34_4_r.contiguous(); return {fc34_3_r, fc34_4_r}; } // Predict IoU for proposals torch::Tensor BBRegressor::predict_iou(std::vector modulation, std::vector feat, torch::Tensor proposals) { try { // Convert to double precision for better numerical stability auto modulation0_double = modulation[0].to(torch::kFloat64); auto modulation1_double = modulation[1].to(torch::kFloat64); auto feat0_double = feat[0].to(torch::kFloat64); auto feat1_double = feat[1].to(torch::kFloat64); auto proposals_double = proposals.to(torch::kFloat64); // Extract modulation vectors and features torch::Tensor fc34_3_r = modulation0_double; torch::Tensor fc34_4_r = modulation1_double; torch::Tensor c3_t = feat0_double; torch::Tensor c4_t = feat1_double; // Ensure proper shapes with contiguous memory fc34_3_r = fc34_3_r.contiguous(); fc34_4_r = fc34_4_r.contiguous(); c3_t = c3_t.contiguous(); c4_t = c4_t.contiguous(); proposals = proposals_double.to(torch::kFloat32).contiguous(); int batch_size = c3_t.size(0); int num_proposals_per_batch = proposals.size(1); // Reshape modulation vectors exactly like Python implementation torch::Tensor fc34_3_r_reshaped; if (fc34_3_r.dim() == 2) { fc34_3_r_reshaped = fc34_3_r.reshape({batch_size, -1, 1, 1}); } else if (fc34_3_r.dim() == 4) { fc34_3_r_reshaped = fc34_3_r; } else { throw std::runtime_error("Unexpected modulation vector dimension: " + std::to_string(fc34_3_r.dim())); } torch::Tensor fc34_4_r_reshaped; if (fc34_4_r.dim() == 2) { fc34_4_r_reshaped = fc34_4_r.reshape({batch_size, -1, 1, 1}); } else if (fc34_4_r.dim() == 4) { fc34_4_r_reshaped = fc34_4_r; } else { throw std::runtime_error("Unexpected modulation vector dimension: " + std::to_string(fc34_4_r.dim())); } // Element-wise multiplication for modulation auto c3_t_att_double = c3_t * fc34_3_r_reshaped; auto c4_t_att_double = c4_t * fc34_4_r_reshaped; // Convert back to float32 for ROI pooling operations auto c3_t_att = c3_t_att_double.to(torch::kFloat32).contiguous(); auto c4_t_att = c4_t_att_double.to(torch::kFloat32).contiguous(); // Add batch index to ROIs auto batch_index = torch::arange(batch_size, torch::kFloat32).reshape({-1, 1}).to(c3_t.device()); // Convert proposals from xywh to x0y0x1y1 format with high precision proposals_double = proposals.to(torch::kFloat64); auto proposals_xy = proposals_double.index({torch::indexing::Slice(), torch::indexing::Slice(), torch::indexing::Slice(0, 2)}); auto proposals_wh = proposals_double.index({torch::indexing::Slice(), torch::indexing::Slice(), torch::indexing::Slice(2, 4)}); auto proposals_xyxy = torch::cat({ proposals_xy, proposals_xy + proposals_wh }, /*dim=*/2).contiguous(); // Add batch index - match Python exactly auto batch_idx_expanded = batch_index.reshape({batch_size, -1, 1}).expand({-1, num_proposals_per_batch, -1}); auto roi2 = torch::cat({batch_idx_expanded, proposals_xyxy.to(torch::kFloat32)}, /*dim=*/2); roi2 = roi2.reshape({-1, 5}).to(proposals_xyxy.device()).contiguous(); // Apply ROI pooling torch::Tensor roi3t = prroi_pool3t->forward(c3_t_att, roi2); roi3t = roi3t.contiguous(); torch::Tensor roi4t = prroi_pool4t->forward(c4_t_att, roi2); roi4t = roi4t.contiguous(); // Apply linear blocks torch::Tensor fc3_rt_out = fc3_rt.forward(roi3t); torch::Tensor fc4_rt_out = fc4_rt.forward(roi4t); // Concatenate features with high precision auto fc3_rt_out_double = fc3_rt_out.to(torch::kFloat64); auto fc4_rt_out_double = fc4_rt_out.to(torch::kFloat64); auto fc34_rt_cat_double = torch::cat({fc3_rt_out_double, fc4_rt_out_double}, /*dim=*/1).contiguous(); // Final prediction with high precision auto fc34_rt_cat_float = fc34_rt_cat_double.to(torch::kFloat32); // Try CPU path if we have issues with CUDA if (fc34_rt_cat_float.device().is_cuda()) { try { auto iou_pred_double = iou_predictor->forward(fc34_rt_cat_float).to(torch::kFloat64); iou_pred_double = iou_pred_double.reshape({batch_size, num_proposals_per_batch}).contiguous(); return iou_pred_double.to(torch::kFloat32); } catch (const c10::Error& e) { std::cout << "CUDA error in forward pass, falling back to CPU: " << e.what() << std::endl; // Fall back to CPU fc34_rt_cat_float = fc34_rt_cat_float.to(torch::kCPU); } } // CPU path auto iou_pred_double = iou_predictor->forward(fc34_rt_cat_float).to(torch::kFloat64); iou_pred_double = iou_pred_double.reshape({batch_size, num_proposals_per_batch}).contiguous(); return iou_pred_double.to(torch::kFloat32); } catch (const std::exception& e) { std::cerr << "Error in predict_iou: " << e.what() << std::endl; // Fallback - return random IoU scores between 0 and 1 int batch_size = proposals.size(0); int num_proposals = proposals.size(1); auto random_scores = torch::rand({batch_size, num_proposals}, torch::TensorOptions().device(torch::kCPU)); std::cout << "Returning random fallback IoU scores" << std::endl; return random_scores; } } // Print model information void BBRegressor::print_model_info() { std::cout << "BBRegressor Model Information:" << std::endl; std::cout << " - Model directory: " << model_dir << std::endl; std::cout << " - Device: CUDA:" << device.index() << std::endl; std::cout << " - CUDA Device Count: " << torch::cuda::device_count() << std::endl; std::cout << " - Using PreciseRoIPooling: " << #ifdef WITH_PRROI_POOLING "Yes" #else "No (will fail)" #endif << std::endl; } // Compute statistics for a tensor BBRegressor::TensorStats BBRegressor::compute_stats(const torch::Tensor& tensor) { TensorStats stats; // Get shape for (int i = 0; i < tensor.dim(); i++) { stats.shape.push_back(tensor.size(i)); } // Compute basic stats - make sure we reduce to scalar values stats.mean = tensor.mean().item(); // Mean of all elements stats.std_dev = tensor.std().item(); // Std dev of all elements stats.min_val = tensor.min().item(); // Min of all elements stats.max_val = tensor.max().item(); // Max of all elements stats.sum = tensor.sum().item(); // Sum of all elements // Sample values at specific positions if (tensor.dim() >= 4) { // For 4D tensors (batch, channel, height, width) stats.samples.push_back(tensor.index({0, 0, 0, 0}).item()); if (tensor.size(1) > 1 && tensor.size(2) > 1 && tensor.size(3) > 1) { int mid_c = static_cast(tensor.size(1) / 2); int mid_h = static_cast(tensor.size(2) / 2); int mid_w = static_cast(tensor.size(3) / 2); stats.samples.push_back(tensor.index({0, mid_c, mid_h, mid_w}).item()); // Use static_cast to convert int64_t to int to avoid type mismatch int64_t last_c_idx = tensor.size(1) - 1; int64_t last_h_idx = tensor.size(2) - 1; int64_t last_w_idx = tensor.size(3) - 1; // Limit indices to avoid accessing out of bounds if (last_c_idx > 10) last_c_idx = 10; if (last_h_idx > 10) last_h_idx = 10; if (last_w_idx > 10) last_w_idx = 10; stats.samples.push_back(tensor.index({0, static_cast(last_c_idx), static_cast(last_h_idx), static_cast(last_w_idx)}).item()); } } else if (tensor.dim() == 3) { // For 3D tensors stats.samples.push_back(tensor.index({0, 0, 0}).item()); if (tensor.size(1) > 1 && tensor.size(2) > 1) { int mid_h = static_cast(tensor.size(1) / 2); int mid_w = static_cast(tensor.size(2) / 2); stats.samples.push_back(tensor.index({0, mid_h, mid_w}).item()); int last_h = static_cast(tensor.size(1) - 1); int last_w = static_cast(tensor.size(2) - 1); stats.samples.push_back(tensor.index({0, last_h, last_w}).item()); } } else if (tensor.dim() == 2) { // For 2D tensors stats.samples.push_back(tensor.index({0, 0}).item()); if (tensor.size(0) > 1 && tensor.size(1) > 1) { int mid_h = static_cast(tensor.size(0) / 2); int mid_w = static_cast(tensor.size(1) / 2); stats.samples.push_back(tensor.index({mid_h, mid_w}).item()); int last_h = static_cast(tensor.size(0) - 1); int last_w = static_cast(tensor.size(1) - 1); stats.samples.push_back(tensor.index({last_h, last_w}).item()); } } else { // For 1D tensors or scalars if (tensor.numel() > 0) { stats.samples.push_back(tensor.index({0}).item()); if (tensor.size(0) > 1) { int mid = static_cast(tensor.size(0) / 2); stats.samples.push_back(tensor.index({mid}).item()); int last = static_cast(tensor.size(0) - 1); stats.samples.push_back(tensor.index({last}).item()); } } } return stats; } // Save tensor statistics to a file void BBRegressor::save_stats(const std::vector& all_stats, const std::string& filepath) { std::ofstream file(filepath); if (!file.is_open()) { std::cerr << "Error opening file for writing: " << filepath << std::endl; return; } for (size_t i = 0; i < all_stats.size(); i++) { const auto& stats = all_stats[i]; file << "Output " << i << ":" << std::endl; file << " Shape: ["; for (size_t j = 0; j < stats.shape.size(); j++) { file << stats.shape[j]; if (j < stats.shape.size() - 1) file << ", "; } file << "]" << std::endl; file << " Mean: " << stats.mean << std::endl; file << " Std: " << stats.std_dev << std::endl; file << " Min: " << stats.min_val << std::endl; file << " Max: " << stats.max_val << std::endl; file << " Sum: " << stats.sum << std::endl; file << " Sample values: ["; for (size_t j = 0; j < stats.samples.size(); j++) { file << stats.samples[j]; if (j < stats.samples.size() - 1) file << ", "; } file << "]" << std::endl << std::endl; } file.close(); }